
Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 1

Getting started with
RISC-V by IAR

The ultimate hands-on eBook:

From curiosity to mastery

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 2

Contents

About this eBook	 4
Foreword 		 5
About the Author	 5
1. Introduction 	 7
	 1.1 Why RISC-V? 	 7
	 1.2 Open-Source ISA and RISC-V	 8
	 1.3 What is RISC?	 8
	 1.4 RISC-V instruction set overview 	 9
		 1.4.1 RISC-V instruction set basics	 9
		 1.4.2 Instruction extensions and custom instruction	 11
		 1.4.3 General-Purpose registers & Floating-Point registers	 11
		 1.4.4 CSR(Control and Status Register)	 12
		 1.4.5 Modes of operation	 12
		 1.4.6 Simple assembler instructions	 13
1.5 Profiles		 13
		 1.5.1 RISC-V profiles	 14
		 1.5.2 RISC-V platform specification	 15
	 1.6 Why should we use RISC-V?	 15
	 1.7 Organization of this document	 16
2. Basic operation of the EWRISCV development environment 	 18
	 2.1 Precautions when using EWRISCV 	 18
	 2.2 Create a project (sample 1) 	 18
		 2.2.1 Creating and running a new project 	 18
		 2.2.2 Project structure	 24
		 2.2.3 About the manual	 24
	 2.3 Options	 26
		 2.3.1 General Options	 26
		 2.3.2 C/C++ Compiler	 32
		 2.3.3 Output converter	 37
		 2.3.4 Linker	 38

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 3

		 2.3.5 Debugger	 41
	 2.4 Understanding the RISC-V project as a whole	 42
		 2.4.1 Creating sample 2	 42
		 2.4.2 Running sample 2	 43
		 2.4.3 About GP relative	 45
	 2.5 C extension instructions	 48
	 2.6 M Extension instructions	 50
		 2.6.1 Creating sample 3	 50
		 2.6.2 Enabling M extension instructions	 51
		 2.6.3 RV32M	 53
	 2.7 A extension instructions	 54
		 2.7.1 Creating sample 4 with A extension instructions	 55
	 2.8 N extension instructions	 57
	 2.9 Custom instructions	 58
		 2.9.1 Opening the IAR information center examples	 58
		 2.9.2 RISC-V operation codes	 59
		 2.9.3 Custom instruction 	 59
		 2.9.4 Using custom instructions in code	 60
		 2.9.5 Using custom instructions in the simulator	 61
	 2.10 About function calls/ABIs	 62
		 2.10.1 C language functions	 62
		 2.10.2 Rules for calling functions	 63
	 2.11 About the output of EWRISC-V	 64
		 2.11.1 Executables/libraries	 64
		 2.11.2 Object files	 64
		 2.11.3 List files	 64
		 2.11.4 Browse files	 64
		 2.11.5 MAP files	 65
3. Learn RISC-V on real hardware	 77
	 3.1 Using the GigaDevice GD32VF103	 77
		 3.1.1 Debug probe connection	 77
		 3.1.2 Checking the connection with IAR I-jet	 79
		 3.1.3 LED blinking: creating sample 5 using GPIO	 81
		 3.1.4 Set up the debugger and start running	 86
		 3.1.4 Learning about interrupts	 88
		 3.1.5 Let’s check the CSR	 94
	 3.2 Using the Renesas FBP-R9A02G021 board	 105
		 3.2.1 Generating and debugging an example project	 106
4. Navigating RTOS, automated workflows, and code quality	 112
5. Conclusion	 115
References		 115

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 4

About this eBook

Infineon, Qualcomm, Nordic Semiconductor,
Bosch, and NXP have already declared
their joint intent to explore the RISC-V
architecture.

Now, with Renesas announcing the availability
of a general-purpose RISC-V MCU, the heat
is on, and embedded developers worldwide
must quickly skill up.

This is “The ultimate hands-on guide: Getting
Started with RISC-V by IAR.”

For numerous years, developers have highly
appreciated RISC-V, particularly its open
architecture, customization, scalability,
and community support. Companies like
SiFive, Andes, and GigaDevice already
operate a respectable and sizeable business
manufacturing and selling RISC-V cores and
devices, but still the commercial lift-off has been
somewhat missing - until now.

The ecosystem surrounding RISC-V is swiftly
maturing, which is also the obvious case
when looking at recently announced industry
partnerships. As more devices are put to market,
performance and efficiency are expected to
improve as competition sharpens. Lastly, large
vendors like Renesas would not enter the RISC-V
arena unless they confidently predict demand.
Consequently, and it’s been a long way coming,
now the cornerstones for RISC-V lift-off appear to
be in the right position.
At IAR, we have spent the past 40 years building

Niklas Källman,
Senior Product Manager,
RISC-V solutions, IAR Systems

solutions and toolchains for a very large number
of architectures and devices, serving embedded
developers and organizations around the world.
This guide is structured around use cases with
IAR Embedded Workbench for RISC-V, including
references to our Static Analysis tool, IAR
C-STAT for RISC-V. As you go through the guide,
we strongly recommend that you download a free
evaluation copy of the software.

IAR´s solutions for RISC-V are Functional Safety-
certified and compliant with standards such as
ISO 26262 for automotive applications and IEC
61508 for industrial automation. The solution can
be operated by a developer, in a CI pipeline with
automated workflows or a combination of both.
You decide how you run it: local, virtual, or cloud,
we call it Open Choice.

We hope that you enjoy this exhaustive free
guide; feel free to share it with peers, and don’t
hesitate to reach out should you have any
additional questions. If you want to dive into more
of our RISC-V tips and tricks and best practices,
go to our RISC-V thought leadership section
located here.

I sincerely hope you are ready to immerse
yourself in RISC-V and wish you a fun coding and
skill-up experience!

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/
https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/
https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/
http://info.iar.com/risc-v

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 5

About the Author:

Hiroki Akaboshi is a senior field application
engineer employed by IAR in Tokyo, Japan. He
has achieved numerous academic degrees,
including a B.E. (1991), M.E. (1993), and D.E. (1996)
in computer science from Kyushu University.

Hirokis research interests primarily concern CPU
architectures and compilers, but his passion lies
in embedded software development. For more
than 20 years, he has channeled that passion into
a wide range of projects focused on safety and
functionality in the automotive industry.

Foreword

This book is intended for developers and
professionals developing embedded software
using RISC-V. We will explain RISC-V features
and its capabilities when using IAR Embedded
Workbench for RISC-V (from now on referred to
as EWRISCV). Thus, to understand, we will also
look at the behavior of the CPU’s instruction
set and stack. The reader is expected to have a
basic knowledge of CPUs and understand the
basic functionality of assembler instructions. This
book employs the C programming language and
assembly language. It provides an introduction
to C programming that is necessary for the

context of this book. As for assembly language, it
focuses on the essentials needed for the RISC-V
architecture. For more in-depth knowledge of
assembly language, readers are encouraged to
consult additional resources.
The evaluation version of IAR Embedded
Workbench for RISC-V is available free of charge
at https://www.iar.com/products/architectures/
risc-v/iar-embedded-workbench-for-risc-v/.
With this book, we encourage the reader to learn
about the RISC-V architecture while using IAR’s
RISC-V solution.

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/
https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/
https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 6

1. Introduction

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 7

1. Introduction

1.1 Why RISC-V?

RISC-V is an open-source instruction set
architecture. Processors and microcontrollers
using the RISC-V instruction set are also often
referred to as RISC-V. RISC-V was first developed
by Krste Asanović in 2010 at the University of
California, Berkeley. RISC-V is the fifth RISC
instruction set (Instruction Set Architecture: ISA)
coming from the University of California, Berkeley.
RISC is an acronym for Reduced Instruction Set
Computer, which refers to a simple instruction
set.

RISC-V has not come out of the blue but has
been made with decades of research and
practical application in mind. For example,
in 1990, David Patterson and John Hennessy
published the book “Computer Architecture:
A Quantitative Approach”[1] which introduced
the DLX architecture, the ancestor of RISC-V.
The DLX in this book was used to a certain
extent in education. These two professors have
popularized RISC in a general sense. John
Hennessy had launched MIPS at that time, so
there was not much movement from a business
perspective with DLX. In this way, the technical
content that led to RISC-V already existed 30
years ago. Another significant point is that
RISC-V is a project on which David Patterson
is involved and continues to distribute RISC-V
information (Ref. 7). Since this project is based
on the experience and collaboration of such
experts, RISC-V solves many problems in legacy
instruction sets. For example, the following points
have been improved in RISC-V.
•	 In contrast to CPUs that have been forced to

expand the address space, 32-bit, 64-bit, and
128-bit CPUs have been considered from the
beginning.

•	 The instruction set is modular, allowing
you to choose to implement only what you
need, allowing you to use limited hardware
efficiently.

•	 Elimination of delayed branching, lazy
loading, and other mechanisms that assume
a pipeline for single instruction execution.

RISC-V International was established in 2015
to promote RISC-V and moved to Switzerland
in 2019. RISC-V International publishes the ISA
specifications for RISC-V, which are developed by
RISC-V International members.

The reason why RISC-V is widely discussed is
that the ISA (instruction set) is open source.
The specification is distributed under Creative
Commons Attribution 4.0 International and is
licensed under a license that may be distributed
or modified. Please note that because the ISA
is open, it does not mean that hardware or IP
(Intellectual Property) is free. Since the ISA
specification is open, there is no problem no
matter who makes a microcontroller with the
ISA. Therefore, various companies, institutions,
universities, etc., have implemented RISC-V
CPUs.

In some cases, design data is released as open
source, mainly by universities, but not all designs
are open to the public, and not all designs are
free. Several companies sell RISC-V IP cores.
Examples include Andes Technology, SiFive, Inc.,
and Codasip. If the instruction set is fixed, you
might think that the implementation will be the
same, but this is not the case; for example, the
number of stages of the pipeline, the number of
instructions issued at the same time, the cache,
memory access, branch prediction, etc., are each
determined by each company.

Furthermore, many people relate GCC (the GNU
C Compiler) to open source. Also for RISC-V,
GCC is supported and is required for building the
Linux kernel and applications. Many people think
that GCC is required when developing software
with RISC-V, but compilers are also required on
a case-by-case basis in developing embedded
systems. For example, in systems requiring
functional safety, the user must validate and
certify the compiler tools, and this is quite tricky.
IAR provides compilers certified by a third party,
significantly reducing users’ time and effort. IAR’s
compiler is specialized for embedded systems,
which also benefits in terms of code size and
execution speed.

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 8

1.2 Open-Source ISA and RISC-V

One of the features of RISC-V is the open-source
licensed instruction set (ISA), but what are the
benefits? Many MCUs (Micro Controller Units)
and MPUs (Micro Processor Units) sold as chips
worldwide are owned by a specific company.

For example, Renesas’ RX family is defined by
Renesas, which implements its vendor-specific
ISAs and sells them as chips. In addition,
Arm sells Arm’s Cortex-M/Cortex-R/Cortex-A
CPU cores as IP (Intellectual Property) to
semiconductor manufacturers, who use the IP
to make and sell chips. Such MCUs and MPUs
have vendor-specific ISAs. Vendor-specific ISAs
cannot be added or modified by the user using
them.

In the case of Arm, there was a contract to use
the Arm IP as it is, and an architecture license
that allowed you to develop it yourself. In addition,
starting in 2020, the Cortex-X Custom Program
has been added, and it is possible to make a
contract that can be customized. In contrast
to these vendor-specific ISAs, RISC-V has the
advantage of being an open-source ISA. For
example, you are free to add special instructions
to implement your application efficiently. In a
vendor-specific ISA, it is generally difficult for
users to add their own instructions. In the case of
Arm, it may be possible to make a contract, but
the user cannot do it alone.

However, there are quite a few projects that
not only have an open instruction set but also
an open IP. So why is RISC-V getting so much
attention? Only creating an open ISA is not
that useful. One reason is that RISC-V has
successfully built a group of friends called an
ecosystem. As of 2023, many companies are
participating in the ecosystem, from hardware to
software. For example, IAR released Embedded
Workbench for RISC-V in 2019, and it has been
upgraded 11 times by March 2023. In addition,
it has also been released in 2021 and 2023 as a
functionally safety-certified toolchain for RISC-V.

If you look at IAR Embedded Workbench for
RISC-V, you can also introduce examples such
as Azure RTOS ThreadX, FreeRTOS example
projects, and SAFERTOS. Considering embedded
systems, having a compiler and RTOS allows you
to start development with peace of mind. IAR is
just one example, but having such an ecosystem
will enable us to provide a more comprehensive
service. On the other hand, if the RISC-V
business is not established in the long term, no
companies will be participating in the ecosystem.
From that point of view, RISC-V, which is an open
ISA, has become a business target.

1.3 What is RISC?

(Reduced Instruction Set Computer)?
RISC is an acronym for Reduced Instruction
Set Computer. What is RISC? Let me briefly
explain the question. In the world of CPUs
(computers), an instruction set is defined, and
a program is created using that instruction set
(side by side). To make the CPU do faster and
more sophisticated things, many engineers
added more and more instruction sets. Software
development is now developed using compilers,
and instructions have been added to execute
high-level language syntax. This has come to be
called the Complex Instruction Set Computer
(CISC) because complex instructions have been
added.

However, as the research progressed properly
(analyzing the execution of the code), it became
clear that complex instructions were rarely used
and that it took more work for the compiler to use
them well. If that is the case, it is easier to design
if only simple instructions are implemented, and
it has been found that the operation as a CPU
can be speedy. What do you do if you don’t have
complicated instructions? For that, it will be
executed by combining simple instructions.

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 9

By using CPUs that are limited to simple
instructions in this way, the movement to create
faster CPUs has been popular since around 1980,
and it has become widely used as a Reduced
Instruction Set Computer (RISC). Sparc, R2000/
R3000, Alpha, i860/i960, PA-RISC, PowerPC, and
others were introduced to the market. “Computer
Architecture: A Quantitative Approach” was
published in 1990 by David A. Patterson and John
L. Hennessy as a computer science textbook.
One of the authors, Patterson, is also involved in
RISC-V.

As the speed of the CPU progresses, the
difference between the speed of the memory and
the operating speed of the CPU has widened. No
matter how fast the CPU is, there is a problem
with waiting when retrieving data from memory
or writing data to memory. This is called the von
Neumann bottleneck. In CISC, there are usually
instructions for manipulating data in memory.
However, since memory access is slow, the CPU
is also affected by the slow access, and the
operation speed slows down. RISC-type CPUs
are also characterized by adopting a load-store
architecture in which general-purpose registers
are prepared, and operations are performed
on the registers. In the load store architecture
adopted by many RISCs, the CPU instruction has
a Load instruction that reads data from memory
and a Store instruction that writes data to
memory. Memory is accessed by Load and Store
instructions, and processing such as addition and
bit arithmetic is performed on registers.

As the CPU gets faster and faster, a method is
taken to close the speed difference between the
CPU and memory by using high-speed memory
such as cache memory (but only small in size).
On modern CPUs, the cache itself is prepared at
multiple levels.

1.4 RISC-V instruction set overview

1.4.1 RISC-V instruction set basics

In RISC-V, the instruction set defines basic
and extended instructions and which custom
instructions can be added. Let’s examine them.
There are four basic types of instructions:
There are three types of addresses: 32-bit,
64-bit, and 128-bit. In addition to 32 general-
purpose registers, 16 are also available for small
microcontrollers.

•	 RV32I (32-bit addressing, integer instructions,
32 general-purpose registers)

•	 RV64I (64-bit addressing, integer
instructions, 32 general-purpose registers)

•	 RV128I (128-bit addressing, integer
instructions, 32 general-purpose registers)

•	 RV32E (32bit addressing, integer instructions,
16 general-purpose registers)

There may currently be little need for the 128-bit
RV128I, but it seems that up to 128 bits have been
added to the basic instruction in consideration
of the future. Since the instruction sets of
existing CPUs are based on 32 bits and have
been expanded, they often have an awkward
structure that has been repeatedly extended
and renovated. On the other hand, RISC-V takes
advantage of the fact that it is a latecomer and
creates a beautiful instruction set by considering
32 bits, 64 bits, and 128 bits together. In addition,
there is still room for future expansion.

First, six instruction formats are the basis of
RISC-V instructions. Among them, opcode and
funct specify instructions, rd, rs1, and rs2 specify
registers, and imm represents immediate data.
In the figure below, it is interesting to note that
rd, rs1, and rs2 are placed in the same position.
These points make it easier to design hardware.

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 10

Therefore, allocating 6 to 2 bits of the instruction
set is determined as follows. The previous figure

inst[6:5]↓
inst[4:2]→

000 001 010 011 100 101 110 111

00 LOAD LOAD-FP custom-0 MISC-
MEM

OP-IMM AUIPC OP-
IMM-32

48b

01 STORE STORE-FP custom-1 AMO OP LUI OP-32 64b

10 MADD MSUB NMSUB NMADD OP-FP reserved custom-2/
rv128

48b

11 BRANCH JALR reserved JAL SYSTEM reserved custom-3/
rv128

>=80b

Let’s look at the actual LOAD instruction, which
is as follows on the RV32I. You can see that inst
[6:2] is 00000. Even in the Load instruction,

is the part corresponding to the opcode. The
lower two bits are inst[1:0]=11.

the part that handles byte data (signed and
unsigned), half words (signed and unsigned), and
word data is distinguished in the INST[14:12] part.

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 11

1.4.2 Instruction extensions and custom instruction

RISC-V can have extended instructions and
custom instructions. This is what makes RISC-V
unique; it is called a modular configuration.
Extension instructions are being proposed to
RISC-V International, and various extension
instructions are being standardized or discussed.
For example, in the 2019 ISA Specifications
(Volume 1, Unprivileged Specification version
20191213[4]), the extended instructions are
described as follows:

Extension Version Status
M 2.0 Ratified
A 2.1 Ratified
F 2.2 Ratified
D 2.2 Ratified
Q 2.2 Ratified
C 2.0 Ratified
Counters 2.0 Ratified
L 0.0 Draft
B 0.0 Draft
J 0.0 Draft
T 0.0 Draft
P 0.2 Draft
V 0.7 Draft
Zicsr 2.0 Ratified
Zifencei 2.0 Ratified
Zam 0.1 Draft
Ztso 0.1 Frozen

The meaning of Status at this time is also
described.
•	 Ratified approved; no changes allowed
•	 Frozen will not be changed without approval

and may only be changed if there is a critical
issue.

•	 Drafts are subject to change until approval.
The status will change over time, so always check
the latest materials.

1.4.3 General-Purpose registers & Floating-Point
registers

RISC-V uses a general-purpose register system,
but 32 integer registers can be used with the
RV32I, RV64I, and RV128I basic instructions.
However, one of them will always be a zero
register with a zero value. The RV32E is designed

for small microcontrollers and uses only 16
integer registers.

RISC-V has two names for integer registers:
the register name and the ABI name. x0~x31 is
the register name, and the ABI name is zero,ra,
sp, gp,tp, t0~t6, a0~a7, s0~s11. If you are
programming in assembler with EWRISCV or
using an inline assembler in a C program, use the
ABI name.

•	 zero is a register that reads are always zero,
and writes are ignored (so always returns
zero) When ra calls a function, set the return
address to ra and call it.

•	 sp is a stack pointer
•	 gp is a global pointer, and gp is a register

used for memory access. To access memory
using this GP, you also need to configure the
linker settings

•	 tp is a thread pointer
•	 t0-t6 are temporary registers
•	 a0-a7 are used for function arguments and

return values
•	 S0-S11 are the conserving registers

Register
name

ABI Name Content

x0 zero zero register

x1 ra return register

x2 sp stack pointer

x3 gp global pointer

x4 tp thread pointer

x5,x6,x7 t0,t1,t2 temporary pointer

x8 s0/fp save register or frame
pointer

x9 s1 save register

x10,x11 a0,a1 function arguments/
return values

x12,x13,x14,
x15,x16,x17

a2,a3,a4,
a5,a6,a7

function arguments

x18,x19,x20,
x21,x22

s2,s3,s4,
s5,s6

save register

x23,x24,x25,
x26,x27

s7,s8,s9,
s10,s11

save register

x28,x29,
x30,x31

t3,t4,t5,t6 temporary register

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 12

The ABI name may differ somewhat from
the group for this register name x0~x31. The
sequence of the save registers is divided. It is
for the RV32E. Since the RV32E can only use 16
registers, it is devised to operate the program
efficiently even when reduced by half.

In RISC-V, it is possible to handle single-precision
floating-point numbers with extended instruction
F and double-precision floating-point with
extended instruction D. In terms of specifications,
there are Zfinx and Zdinx that use quadruple
precision and integer registers with extended
instruction Q, but first, we will proceed with the
basic F and D. The floating-point register has
32 registers. Use the lower 32 bits for single

0xF11 mvendorid Vendor ID
0xF12 marchid Architecture ID
0xF13 mimpid Implementation ID
0xF14 mhartid Hardware thread ID
0x300 mstatus Machine status register
0x301 misa ISA and extensions
0x304 mie Machine interrupt-enable register
0x305 mtvec Machine trap-handler base address
0x341 mepc Machine exception program counter
0x342 mcause Machine trap cause
0x343 mtval Machine bad address or instruction
0x344 mip Machine interrupt pending

precision and 64 bits for double precision.
Floating-point registers can be f0~f31 for single
precision and d0~d31 for double precision.

1.4.4 CSR(Control and Status Register)

RISC-V has a group of registers called CSR
(Control and Status Register). Since it can
be specified as a 12-bit value, various control
registers are defined in Reference [5]. However,
in reality, the implementation differs depending
on the chip. For details, please check the
specifications and the microcontroller to be
used. Here are some of the most important CSR
registers. In Chapter 3, we will check these values
while looking at the values on the GigaDevice
microcontroller.

1.4.5 Modes of operation

Reference [5] describes the privileges and
describes the modes of operation. If you look at
the current embedded microcontrollers, you will
see that they have a machine mode and a user
mode. level

Level Value Modes of operation
0 00 user/application (U)
1 01 superviser (S)
3 11 machine (M)

It is expected that the software and drivers
will be running. The machine mode must be
implemented in any implementation, but the
other modes are optional. Three combinations
will be implemented.

of support
levels

Support
mode

Usage

1 M Simple embedded
system (S)

2 M,U Secure system (S)
3 M,S,U Unix, android, or

Windows

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 13

When entered, it will transition to machine mode
(there is also a way to transfer, but the explanation
will be omitted here). MRET is the instruction
used when returning from interrupt processing in
machine mode.

1.4.6 Simple assembler instructions

There are not many people who create programs
in assembler these days. However, it is still used
if you want to implement an RTOS or optimize
performance. There are extension and custom
instructions in the case of RISC-V, so you should
at least remember the assembler when using
RISC-V. Remembering operations, memory
accesses, and function calls/returns would be
best. First, look at two instructions as arithmetic
examples: the addition add instruction and the
additive immediate value addi instruction.

•	 add a0, a1, a2
•	 addi a0, a1, 1

The add directive specifies three registers, where
a0 is the resulting storage register, a1 is the first
argument, and a2 is the second argument. If you
write it mathematically, it will be like a0 = a1 +
a2, which is the same as the order in which it is
written in assembler. This instruction adds the
contents of registers A1 and A2 and writes them
to A0.

In the instruction addi, a0 is the result storage
register, a1 is the first argument, and 1 is the
immediate value. Mathematically, a0 = a1 + 1, add
1 to register a1 and write to a0. The following are
the lw and sw instructions for memory access.

•	 lw a0, -8(gp)
•	 sw a0, -8(gp)

The instruction lw becomes the meaning of the
load word, which retrieves the word data from
memory and stores it in a register. The address
of the memory is the register plus the offset,
which is the address of -8 to the contents of gp,
and the contents of the address are stored in a0.
The instruction sw becomes the meaning of the
store word and writes the value of the register
to memory. The address of the memory is the
register plus the offset, which is the address of -8

to the contents of gp, and the contents of register
a0 are written to that address. In the case of a
memory access instruction, the first argument
is a register, and the second argument is the
memory address.
The next is the jump instructions.
•	 jal ra, 0x18 (call 0x18 pseudo instruction)
•	 jalr zero, ra, 0x0 (ret pseudo instruction)

The instruction jal saves the address of the next
instruction in the register ra and sets (jumps)
the PC to the address obtained by adding the
immediate 0x18 to the current PC. If you write
it as a call pseudo-instruction, it becomes call
0x18, but it has exactly the same meaning. The
instruction jalr stores the next instruction in the
zero register and sets the PC to the address
obtained by adding the offset 0x0 to the register
ra. Writing to the zero register is meaningless in
RISC-V, so it is used when returning from a simple
function. Therefore, the RET pseudo-instruction
has the same meaning.

At first, assembler may seem difficult to grasp,
but once you have the opportunity to use and
see it, you will get used to it. To accelerate
habituation, it is a good idea to learn using
RISC-V standards.

1.5 Profiles

RISC-V has a modular structure that allows
extension instruction selection. However, if you
create a modular structure too freely, you may
end up with many incompatible things. In fact,
Dr. David Patterson has also explained these
concerns. A blog with Dr. David Patterson listed
in the Bibliography [3] is titled “Top Ten Fallacies
About RISC-V”.

The sixth part of the misconception is that
“6. modularity leads to a more fragmented
software ecosystem “ he writes, “ This fallacy has
been raised since we first started advocating
for RISC-V, so it’s not been neglected”.. It is
explained.

Here’s an introduction to the current profile.

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 14

1.5.1 RISC-V profiles

RVI20 Profiles, RVA20 Profiles, and RVA22
Profiles are defined in the instruction set (as of
2023). These Profiles are defined in the following
six ways:
•	 RVI20U32
•	 RVI20U64
•	 RVA20U64
•	 RVA20S64
•	 RVA22U64
•	 RVA22S64

The first two letters “RV” refer to RISC-V, and
the three letters indicate the family name of the
profile.
•	 RVI: INTEGER
•	 RVM: MICROCONTOLLER
•	 RVA: Application

A two-digit number indicates the year of approval
of this profile. The sixth character specify the
operating mode: M-mode (machine mode),
S-mode (supervisor mode), and U-mode (User
mode). The two digits at the end specify 32 bits
and 64 bits. For example, the RVI20U32 profile
consists of three elements: Mandatory Base,
Mandatory Extensions, and Optional Extensions.
•	 In the Mandatory Base, the RV32I is specified

as little-endian. In addition, the fence.tso
directive is also mandatory.

•	 None- mandatory extension
•	 Optional Extensions

	> M Integer multiplication and division.
	> A Atomic instructions.
	> F Single-precision floating-point

instructions.
	> D Double-precision floating-point

instructions.
	> C Compressed Instructions.
	> Zifencei Instruction-fetch fence

instruction.
	> Misaligned loads and stores may be

supported.
	> Zicntr Basic counters.
	> Zihpm Hardware performance counters.

Let’s also take a look at the RVA22U64 Profile.
•	 In the Mandatory Base, the RV64I is specified

as little-endian. In addition, the fence.tso
directive is also mandatory.

•	 Mandatory Extensions

	> M Integer multiplication and division.
	> A Atomic instructions.
	> F Single-precision floating-point

instructions.
	> D Double-precision floating-point

instructions.
	> C Compressed Instructions.
	> Zicsr CSR instructions. The presence of F

implies these.
	> Zicntr Base counters and timers.
	> Zihpm Hardware performance counters.
	> Ziccif Main memory regions with both

the cacheability and coherence PMAs
must support instruction fetch, and any
instruction fetches of naturally aligned
power-of-2 sizes up to min(ILEN,XLEN)
(i.e., 32 bits for RVA22) are atomic.

	> Ziccrse Main memory regions with
cacheability and coherence PMAs must
support RsrvEventual.

	> Ziccamoa Main memory regions with
cacheability and coherence PMAs must
support AMOArithmetic.

	> Zicclsm Misaligned loads and stores
to main memory regions with both the
cacheability and coherence PMAs must
be supported.

	> Za64rs Reservation sets are contiguous,
naturally aligned, and have a maximum of
64 bytes.

	> Zihintpause Pause instruction.
	> Zba Address computation.
	> Zbb Basic bit manipulation.
	> Zbs Single-bit instructions.
	> Zic64b Cache blocks must be 64 bytes

in size, naturally aligned in the address
space.

	> Zicbom Cache-Block Management
Operations.

	> Zicbop Cache-Block Prefetch
Operations.

	> Zicboz Cache-Block Zero Operations.
	> Zfhmin Half-Precision Floating-point

transfer and convert.
	> Zkt Data-independent execution time.

•	 Optional Extensions
	> Zfh Half-Precision Floating-Point.
	> V Vector Extension.
	> Zkn Scalar Crypto NIST Algorithms.
	> Zks Scalar Crypto ShangMi Algorithms.

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 15

1.5.2 RISC-V platform specification

RISC-V profiles are specified as extension
instructions, so it is a simple list. In addition, the
RISC-V Platform Specification is defined. This
is a meaningful profile. Currently, there are two
platform profiles: OS-A platform for relatively rich
operating systems such as Linux and Windows
and Platform M for RTOS and bare-metal systems
that run on MCUs used in embedded systems.

The OS-A Platform defines the OS-A Embedded
Platform and the OS-A Server Platform, while
the M Platform defines the Base and Physical
Memory Protection (PMP) Extension. OS-A
requires ISA profiles for RVA22U and RVA22S,
and M Platform requires RVM22M. However, at
the moment, it is said that the specifications of
the RVA are being prioritized, and there is no
material about the RVM22M yet.
They seem to be in a hurry to support Linux
and Android around here. It is important to
understand this situation if you are using RISC-V
or creating your own RISC-V core.

1.6 Why should we use RISC-V?

The content introduced so far has explained
the technical points of RISC-V. The RISC-V
specification can implement not only basic
instructions but also extended instructions
and custom instructions, making it possible to
support various systems. Since it is a new ISA,
it has the advantage of being cleaner than the
existing instruction set (clean instructions are
easy to implement). The advantage of RISC-V is
that many other points improve performance.
Three factors determine performance.

•	 Performance = (Time/Program)
It is possible to make a clear assessment that the
shorter the time to run the program, the better. If
you put a little more effort into the right side, it will
be easier to understand. We get the following if
we break down the elements on the right side.

•	 Performance = (Time/Cycle) * (Cycle/
Instruction) * (Number of Instructions/
Program)

Looking at each, (number of instructions/
program) is how many instructions one program
can execute, (cycles/number of instructions)
is how many cycles one instruction can be
executed, and (time/cycle) is how many seconds
can one clock cycle be executed. It isn’t very
easy, but let’s think about it.

1.	 The number of instructions/programs is set in
the Instruction Set Architecture (ISA).

2.	 The microarchitecture determines the
number of cycles/instructions. For example,
the number of stages in a pipe run, the
superscalar, and the cache configuration are
factors here.

3.	 Time/cycle has a significant impact on
semiconductor processes. If you try to speed
them up, you will use an expensive micro
process because it involves the manufacture
of semiconductors.

RISC-V is characterized by the fact that 1 and
2 can be changed by the user. In addition, by
changing 1 and 2 by the user, it is possible to be
implemented in a cheap semiconductor process.
Therefore, in the case of the highest degree of
freedom, all of 1, 2, and 3 can be changed and
selected by the user.

For example, in Arm’s Cortex series, the
purchased design data (Arm processor core)
is often used as is (there is a separate contract
for customization). Therefore, changing the
semiconductor process is the only way to
improve performance.

RISC-V, on the other hand, allows you to add
instruction sets and change the pipeline
configuration. For example, an app may have
a special operation that can be improved by
implementing a custom instruction that executes
the operation directly. If other companies use
general-purpose CPUs, these custom instrictions
cannot be imitated, so they can significantly
contribute to product differentiation. In addition,
even if competitors try to make similar products,
competing with them at the same clock
frequency will be difficult.

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 16

A major feature of RISC-V is that it allows
you to select a method that is different from
conventional CPU cores. When developing
semiconductors (or mounting them in FPGAs),
it may be possible to improve performance
(processing power and low power consumption)
by modifying the CPU core itself. In recent years,
in order to make competitive products, there
has been a movement to make competitive
semiconductors by ourselves. Representative
movements will be Apple and Google. Apple
and Google are developing different businesses
on iOS and Android, but both companies
have developed their own semiconductors
and installed them in their products. It will be
interesting to see what happens in the future.

However, RISC-V is an open instruction
set. It is also possible to switch to another
company’s RISC-V. It is also possible to
make semiconductors by ourselves. Strictly
speaking, we need to think about peripherals
and semiconductor processes, but there will
be a big change from the place where nothing
has been possible so far. The third benefit is
the postponement of assignments. Certainly,
the merits of RISC-V are understood, but the
creation of our own CPU cores is not feasible at
the moment. If you are not sure whether you will
use custom instructions in the future, you can use
RISC-V to prepare for future changes. Even if you
don’t have a plan now, if you use RISC-V, you will
be able to add custom instructions at a certain
timing. It is not uncommon for performance
to increase several times by inserting new
instructions. For that reason, you can prepare
for the next one while studying the RISC-V
implementation that has been released, and you
can also purchase CPU cores as IP (Intellectual
Property) without making them yourself.

Let’s expand the discussion from business to
international politics. In the past, there was a
Coordinating Committee for Multilateral Export
Controls (COCOM), which was established
in 1949, began its activities in 1950, and was
disbanded in 1994 due to the end of the Cold
War. If you search for COCOM violations, you can
confirm that various incidents have occurred.
This was a long time ago, but now there is the
issue of trade friction between the United States
and China. Specifically, there have been cases
where CPU technology cannot be exported to
China. This friction can also be related to the
products you develop. From this point of view,
RISC-V with open source ISA, even if a specific
microcontroller cannot be exported, there is a
possibility that it can be replaced with a locally
available one.

1.7 Organization of this document

By now, you should have understood that
RISC-V is different from microcontrollers and
CPUs provided by conventional semiconductor
vendors. In Chapter 2, we will use IAR’s
development environment called EWRISCV to
check the actual instruction set and key points
that will be generated.

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 17

2. Basic operation of the EWRISCV
development environment

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 18

2. Basic operation of the EWRISCV
development environment

The fastest way to learn RISC-V is to create
and run a program. In this case, we will use the
IAR development environment. IAR Embedded
Workbench for RISC-V (from now on referred
to as EWRISCV) is an embedded software
development environment for RISC-V. This
chapter explains how to use the EWRISCV. There
is also a tool called iarbuild.exe for running on

2.1 Precautions when using EWRISCV

The following are some points to note when using
EWRISCV. The following items are required for a
PC to run EWRISCV.
•	 A Pentium-compatible PC with Windows 7,

Windows 10, or Windows 11, 64-bit versions.
•	 At least 4 GB of RAM and 10 GB of free disk

space.
•	 Adobe Acrobat Reader to access the product

documentation

In order to use it comfortably, the PC’s memory
must be 8 Gbytes or more, and the HDD must be
about 20 GB. In addition, for development, we
recommend a multi-monitor environment using
multiple monitors. Please consider the following
points.

the command line, but the basic usage is to
run it using the options set in the integrated
development environment. The compiler itself is
provided as a command line tool called iccriscv.
exe, the linker is provided by ilinkriscv.exe, etc.,
so you can also use general make commands.
However, in this book, we will explain how to use it
in an integrated development environment.

2.2 Create a project (sample 1)

2.2.1 Creating and running a new project

When you start EWRISCV, the following screen
will appear:

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 19

To create a new project, select Project > Create
New Project from the toolbar. Select [main] and
click [OK].

Then, the following screen will appear, so specify
the folder where you want to create the project
in the input at the top, enter the file name of the

project, and finally click [Save]. In this case, set
(2) the project name ProjectS2P1 to the folder (1) /
home/RISCVstudy/S2P1, and (3) click [Save].

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 20

This created a project that contains main.c, but
we will also create a workspace now. Select [File]-

[Save Workspace] to open the screen, specify the
file name of the workspace, and then click [Save].

Then, the project is created in the following state.
In the figure below, there is a workspace screen
on the left side, an editor screen on the right side,
and main.c is open. EWRISCV is an MDI-type

Windows application with multiple child windows
on the main screen. You can change the position
of child windows or hide them.

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 21

At this point, we have the base of a project to
create a C language program with EWRISCV.
When you generate a new project, EWRISCV sets
the options and other settings to their default
state. In this article, we will develop the software

in this default state. Let’s create a Hello World
program. The Hello World program is the first
program in the C programming language. To
start with, change the generated main.c to the
following.

Now that the source code is ready let’s build it:
Select [Project] - [Make] or click the make button.
If you want to compile, click [Project]-[Compile] or
click the compile button. The difference between
compilation and make will also be explained. The
compilation is to compile a file with the extension
.c/.cpp to create a .o file. Files with the .o

extension are called object files, but they cannot
be executed because the location of variables
and functions has not yet been determined.
Make compile files with the extension .c/.cpp.
Object files (.o) are collected and combined
in an executable format output file. In modern
microcontrollers, the output format is called ELF.

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 22

Errors and warnings can also occur at compile
time. In EWRISCV, information is output to the
Build window. At the bottom of the figure below,
there is a Build window, and an error message

appears. The error message shows the file
name and the number of lines in which the error
occurred. Clicking on this line jumps to the line in
the editor where the error occurred.

If there is an error, please check for a typo. A
common problem occurs when double-byte
characters are entered in addition to text
strings and comments. For example, spaces,
semicolons, double quotation marks, and
parentheses are hard to notice.

Once there are no errors and the build is
complete, let’s start debugging. The simulator is
used for debugging by default, so click Download
and Debug. This will put the EWRISCV into debug
mode. In this case, printf outputs a string, but
select [View]—[Terminal I/O] for its display.

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 23

Then, the Terminal I/O screen will open,
as shown in the figure, so please execute
it. Hello World appears on the Terminal
I/O screen. If you execute the program in

detail, you can proceed by combining step
over, step into, step out, etc. If you perform
a reset, you can perform it again.

Terminal I/O is not the only screen that can
be used for debugging. As shown in the
figure below, various information can be
displayed. Commonly used ones include

Memory, Watch, and Registers. For more
detailed information, check the EWRISCV
manual.

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 24

During debugging, you can edit the file, but you
can’t actually change the options. When you are
finished debugging, click Exit Debugger.

2.2.2 Project structure

So, what is the project structure of EWRISCV?
You will see the following.
•	 Workspace (.eww)
•	 Project files (.ewp)
•	 main.c
•	 [Folder]Debug

	> [Folder] BrowseInfo
	> [Folder] EXE
	> [Folder] List
	> [Folder] Obj
	> [Folder] setting

The following files/folders are located in the folder
where this project was created. A workspace
is a container for managing projects. You can
manage multiple projects in one workspace. The
project file has two configurations: Debug and
Release. Due to the default Debug configuration,
there is only a Debug folder at this stage. There
are four folders under that folder: BrowseInfo,
Exe, List, and Obj. The folder BrowseInfo contains
information such as the analysis of the source
code. Therefore, there is no need for the user to
see it directly. The folder Exe is the location of
the Made Executable Format (ELF). When you

generate a HEX file, etc., it will be generated in
this Exe folder by default. In the folder List, MAP
files and other files are placed. The folder Obj
contains the compiled .o files.

It can be difficult to check in large projects, so
let’s check what is generated where in these
small projects.

2.2.3 About the manual

When developing software, it is necessary to
research how to use compilers, assemblers, etc.
EWRISCV provides PDF manuals and online help.
If you select [help] on the EWRISCV development
screen, you can select manuals, etc. (red box in
the figure below).
•	 For information about the development

environment, see the IDE Project
Management and Building Guide

•	 For information about the C/C++ compiler
and linker, see the C/C++ Development
Guide

•	 For details about assembler, see the
Assembler User Guide

•	 For debugging information, see C-SPY
Debugging Guide

•	 For details about debug probes, see the
Debug Probe User Guide

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 25

For example, when you open the C/C++
Development Guide, you will see a PDF file with
the following display: This C/C++ Development

Guide contains information about the following:
Part 1 explains the basic concepts, and Part 2
describes the options and other details.

Part1. How to use the development tools

•	 Development environment
•	 Development of embedded applications
•	 About storing data About Functions
•	 Links using ILINK
•	 About the Runtime Environment
•	 Interface with assembler, etc.

Part2. Reference Information

•	 Compiler options
•	 Linker options
•	 About data types
•	 Extended keywords
•	 About Pragmas
•	 Built-in functions
•	 About linker settings
•	 About sections used by the compiler
•	 About the Stack Analysis Settings File
•	 C++/C Language Implementation

Dependencies

When you press the F1 key in the EWRISCV
window, the online help is displayed.

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 26

2.3 Options

First, let’s take a look at how to set project options
and what they do. To open the project options in
EWRISCV, double-click √ (above the red arrow

below) to the right of the project name on the
workspace window, or select the project name
in the workspace window and select [Project]-
Options.

The part surrounded by the red frame in the
above figure is the Options screen. This Option
screen has categories on the left and a place to
set options on the right.

2.3.1 General Options

In General Options, you can 1) specify options
related to the RISC-V instruction set, 2) stack,

heap size, and code model, 3) library settings,
and 4) output format and folder settings.

On the Project Options

On the Project Options screen, select General
Options under Category. Tabs for Target and ISA
Extensions allow you to set options related to the
instruction set.

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 27

The most important part is [Device], and if the
microcontroller to be used is decided, it can be
specified here to set the extension instructions
automatically. For example, if you select SiFive’s
HiFive1 Rev B, the instruction set options are

set as follows: If you check the implementation
instructions for HiFive1 Rev B, it says RV32IMAC,
so you can see that the RV32I + M + A + C option
is set (marked with a green box).

In EWRISCV, basic and extended instructions
can be specified individually. To do this, click
the Device selection button (arrow in the figure
below), select [Generic], and select [RV32] or
[RV64]. For other extension instructions, you can

select any extension instruction by choosing to
check or not check one by one (of course, there
are also dependent instructions, so it is not
completely free to choose).

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 28

You can choose from the following three basic
instruction sets.
•	 RV32E: 32-bit, 16 general-purpose registers
•	 RV32I: 32-bit, 32 general-purpose registers
•	 RV64I: 64-bit, 32 general-purpose registers

In the Target option, the following can be selected
as standard extension instructions:
•	 M: Integer multiplication/division
•	 A: Atomic Instruction
•	 C: Compressed (16-bit) instruction

•	 N: User-level interrupt
•	 B: Bit manipulation instruction

	• Zba: Instructions for address calculation
	• Zbb: Underlying bit instruction
	• Zbc: Carryless multiplication
	• Zbs: Single-bit manipulation instruction

The following floating-point extension
instructions are available:
•	 F: Single-precision floating-point arithmetic

in floating-point registers
•	 Zfinx: Single-precision floating-point

arithmetic on integer registers
•	 D: Double-precision floating-point arithmetic

in floating-point registers
•	 Zdinx: Double-precision floating-point

arithmetic on integer registers

You can choose from the following options for
code size reduction:
•	 Zcb: 16-bit extension instruction to add C

extension
•	 Zcmp: 16-bit extension instruction that makes

the code smaller with stack manipulation
instructions

For cryptographic extensions, you can choose
from:
•	 Zkn: Extensions for NIST Algorithms
•	 Zks: Extended instructions for ShangMi

Algorithms
Cache management enhancements include the
following options:
•	 Zicbom: Cache Block Management
•	 Zicbop—Cache prefetch operation
•	 Zicboz: Cache Block Zero Processing
•	 Xeswincache: Non-standard cache

management extensions
Andes extensions can be selected from the
following:
•	 Xandesperf: Andes’ performance

enhancement AndeStar V5 Performance
•	 Xcodense: Andes’ code size compression

extension AndeStar V5 CoDense
The following DSP extensions are available:
•	 None: Do not use DSP extensions
•	 Xandesdsp: DSP extension from Andes
•	 P:Uses a subset of the P extensions, Zpn and

Zbpbo
•	 Zpsfoperand: Use all P extensions

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 29

Stack, heap size, and code model

The CodeGenration options screen allows you to
configure the code model and set the stack/heap
size.

Code Model is an option to select for 64-
bit RV64I. In terms of functionality, Medlow
is an option to address with 32-bit absolute
values. Because it is signed and processed,
the area of memory that can be accessed is
0x0000000000000000 to 0x000000007fffffff
or 0xffffffff80000000 to 0xffffffffffffff.

Medany, on the other hand, addresses in
relation to the PC. At this time, you can specify
a relative address from -2GB to +2GB. Medlow
had a space of +-2 GB centered on the 0x0, but
because it is PC-relative, the space that can be
referenced is larger than Medlow’s. However, you
can only refer to -2 GB to +2 GB addresses from
the PC, so be careful when using RV64I.

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 30

Library

Library Configuration, Library Option1, and Library
Option2 configure the library’s settings. First, in
Library Configuration, you can choose from none,
Normal, FULL, libc++, and custom libraries.

•	 Normal: C/C++14 libraries (C locale only,
no multibyte support, no FILE support)

•	 FULL: C/C++14 libraries (full set)
•	 libc++: C/C++17 libraries (full set)
•	 custom: This is a specification when using

your own C/C++ library

Library Configuration allows you to specify
libraries for low-level interfaces. This is a
setting for whether or not to use a file on the
PC when the debugger is connected or to
use a function for the debugger that executes

standard input/output, such as printf, to the
debugger screen. Specify None if you don’t
want to use it or IAR Breakpoint if you’re going
to use it. For stdout/sterr, specify how to output
standard output to the debugger. Normally,
you would choose Via IAR Breakpoint, which
outputs data at break, but for devices with an
Instrumentation Trace Component (ITC), you
can set Via Trace ITC.
Library settings can be set for printf/scanf,
math functions, and the heap.

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 31

Libraries have a significant impact on the size
of the code implemented, depending on the
features they use. If there is a feature that you
do not use, please select the correct option. The

following is the format specification in printf. The
NoMB at the end of the name means “do not use
multibytes”.

printf features Tiny Small/
SmallNoMB

Large/
LargeNoMB

Full/
FUllNoMB

Basic specifiers c, d, i, o, p, s, u, X, x, and % YES YES YES YES
Multibyte NO YES/NO YES/NO YES/NO
Floating-point specifiers a and A NO NO NO YES
Floating-point specifiers e, E, f, F, g, and G NO NO YES YES
Conversion specifier n NO NO YES YES
Format flag +, -, #, 0, and space NO YES YES YES
Length modifiers h, l, L, s, t, and Z NO YES YES YES
Field width and precision, including * NO YES YES YES
long long support NO NO YES YES
wchar_t support NO NO NO YES

The scanf format specification is as follows. The
scanf format specification is as follows.

scanf Description Small/
SmallNoMB

Large/
LargeNoMB

Full/
FUllNoMB

Basic specifiers c, d, i, o, p, s, u, X, x, and % YES YES YES
Multibyte support YES/NO YES/NO YES/NO
Floating-point specifiers a, and A NO NO YES
Floating-point specifiers e, E, f, F, g, and G NO NO YES
Conversion specifier n NO NO YES
Scan set [and] NO YES YES
Assignment suppressing * NO YES YES
long long support NO NO YES
wchar_t support NO NO YES

The heap algorithm can also be optionally
selected. The heap is the memory used for
malloc/free in C and new/delete in C++.
•	 Automatic: IAR determines the situation and

selects one of the following three options:
•	 Advanced Heap: The best option for heavy

HEAP users

•	 Basic Heap: Recommended option if you
don’t use HEAP too much

•	 No-free Heap: Recommended option if you
don’t want to free up memory

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 32

Output Format & Folder Settings

The Output option specifies the output as a
library or executable format and specifies the
output folder for each product. If there are no
particular problems, it is better to operate it as it
is. The final product (executables and libraries)
is stored in the Executables/Libraries folder, and
the map files are stored in the List Files folder.

2.3.2 C/C++ Compiler

C/C++ compiler options are specified here.
This section describes 1) language settings,
2) optimization settings, 3) output settings,
4) preprocessor settings, and 5) diagnostics
settings.

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 33

Language settings

EWRISCV can compile C or C++ languages.
Therefore, it is necessary to choose the language
C/C++. You can set the Language on the options
screen of Language1. If the extension is .c, it is C
language, and if the extension is .cpp, it is C++
language, Auto (Extension based) can also be
used. In the C dialect, you can choose between
C89 and the current C18 standard. In Language
Conformance, you can choose to select from
the following three levels of compliance with the
standard. In an embedded system, you may want
to use CPU-specific instructions, but it may be
troublesome to write a program in assembler,
so IAR has prepared language extensions for
embedded systems. For example, to declare
an interrupt handler in C, we have the keyword
__interrupt.
	

•	 Standard with IAR extensions—If you want to
enable IAR extensions

•	 Standard— Disables IAR extensions, but does
not adhere strictly to the C or C++ dialect you

•	 have selected. Some very useful relaxations to
C or C++ are still available.

•	 Strict: When strictly adhering to the language
specification

For language 2, some points need to be
confirmed. If you look at C language books, you
will see some that say, “char is signed, and if only
positive integers are handled, it is defined as
unsigned char,” but that is not correct. In the C
language standard, the sign of char is left to the
implementation. There are many cases where
char is used as an unsigned char. EWRISCV allows
the user to specify it. Define it with the type you
want to use.

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 34

Optimization settings

In the Optimizations tab, you can choose to
optimize as None, Low, Medium, or High,
depending on the level. Keep in mind that
optimizations can make debugging in source

code more difficult. Optimizations can change
the order of execution, expand loops, or perform
calculations in advance, making it difficult to
step through them in the order in which they are
described. If you want to debug at the source
code level, select None or Low.

Output settings

In the Output tab, there is an Output setting
called Generate Debug Information. To debug the
source code, be sure to check Generate Debug
Information.

In the List tab, you can specify the output of
the compiled list file and create assembler
output. It is a good idea to use a list file to create
assembler output to check how a C program is
compiled. Please note that assembler output is
not possible in the evaluation version.

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 35

Configuring the preprocessor

In EWRISCV, you can add a header file to the
Workspace window as shown below, but if you do

not configure the include paths correctly, an error
will occur if the header is not present, and you will
not be able to compile.

In EWRISCV, you need to specify the folders
where header files are located. If nothing is
specified selected, the folder with the project
file, the inc folder, and the inc/c folder of the

EWRISCV toolchain will be searched. If you want
to search other folders, specify the folders in
the Additional include directories field of the
Preprocessor tab.

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 36

Avoid specifying a folder with an absolute path,
as this will lead to many problems when sharing
the project. EWRISCV can refer to the location of
the project folder (the folder where the .ewp file
is located) in a relative fashion, with $PROJ_DIR$,
so if you specify:

It will also search the inc folder directly under the
project folder. If there is more than one, add it on
a different line.

Also, in order to set the equivalent of #define
SYM (1) at compile time, specify the define inthe
Preprocessor tab , Define Symbols window.

If you simply define SYM, the value is set to
1. If you want to set a value other than 1, use
SYM=100.

Diagnostics

In EWRISCV, the settings for errors and warnings
can be changed. First, in the Diagnostics option,
you can enable remarks. A remark is not an error
but a message to the effect that you should be
careful. If you want to make your program more
reliable, you can look at this output and change
the code in some cases. You can also change the
level of errors and warnings or stop the output.

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 37

2.3.3 Output converter

In EWRISCV, the file created when building is
an executable file in ELF format. However, if you
want to use it with another device, such as a ROM
writer, you may need to output in HEX or SREC
format. At that time, the Output Converter option
allows you to specify additional outputs.

You can choose from the following four file
formats. The most commonly used formats are
Intel and Motorola.

•	 Motorola S format
•	 Intel Format
•	 Binary
•	 Simple-code

For example, in the built-in, the main function
continues processing in a while(1) loop, so no
further processing is performed. In the program
on the left below, there is a description of “return
0;” after the while loop, but this line is never
executed. In EWRISCV, the warning is output as
[Pe111]. Since there is no problem as a program,

it is possible to ignore this warning even if it
appears, but you can change the diagnostic
settings to change this warning to another
remark. By specifying Pe111 in the middle of the
figure below, you can confirm that the warning
disappeared at the time of build by remarking.

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 38

2.3.4 Linker

The linker integrates the .o file created by the
C/C++ compiler and the necessary data and
outputs the program in an executable format.
The file that describes the linker configuration is
called the linker configuration file, but in IAR, it
has a .icf extension.

IAR provides a linker configuration file for the
microcontroller so that you can set it with the
Config option. On the left side of the figure below,
we will use the default Linker Configuration file.
This default linker configuration file is located in:

under the EWRISCV installation folder.

However, in reality, linker settings are often
specified individually for each project. Copying
is frequently used to copy the default file to the
project folder. Since the folder where the project
file is located is the project, it can be indicated
by the folder $PROJ_DIR$. So, on the right side
of the figure below, $PROJ_DIR$generic.icf is
specified as the linker configuration file. You can
also define the symbols to be used in the linker
configuration file under it.

Library option setting, but by default, Automatic
runtime library selection is enabled. Some people
don’t like the fact that the library is automatically
built, but since the compiler is devising code
generation, please basically enable and use
it here (or if you can fully understand the code
generated by the compiler and map the mapping
yourself, it is possible manually).

Although it is under the Library option, it is
possible to specify the Program Entry. Again, by
default, it is __iar_program_start, but the user can

change it. This is the information that the linker
needs to create an executable file. By specifying
the function (label) to be executed immediately
after the reset, the functions and variables
necessary for executing the program are placed
from here. Therefore, functions that are not
explicitly called or variables that are not explicitly
accessed are not linked because the linker
determines that they are not needed. In such
cases, specify them individually with -keep (which
can be specified with the following Input option).

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 39

In the Input option, you can specify that the
symbol should be kept so that functions without
explicit calls and variables without explicit access
are not deleted (left in the executable form). In the
figure below, “YYYY” is specified.

In EWRISCV, when importing binary data such
as image files and audio files into an executable
format, specify it in Raw binary Image under the
Input option. That data specifies the symbol
name, section, and alignment.

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 40

For output, take a look at the Output and List
options. The left side of the figure below is the
Output option, but it is possible to specify the file
name for the output. By default, it will be
project_name.out. Below that, there is a check to
see if you want to include debugging information,
but basically, you should include it. If you don’t
include debug information, you won’t be able to
back up the source code. Some people mistakenly
think that the final ROM size will be larger because

the file size will be larger. After all, there is debug
information, but the ROM size is the same with
or without debug information. It is also possible
to remove the debug information (using the
command ielftool provided by EWRISCV).

If you also look at the List option, you can output
a MAP file by enabling the “Generate linker map
file.” If you have completed the build but do not
have a MAP file, please check here.

EWRISCV can also perform stack analysis, which
is specified in the linker options. Check [Linker]—
[Advanced]—[Enable stack usage analysis] to

perform the analysis. The analysis results are
output to MAP, but they can also be output in
XML.

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 41

2.3.5 Debugger

EWRISCV has several debug interfaces, which
can be switched between options. In this section,
we will check the settings for using the simulator.
Select the category Debugger and check the
Setup option. In the Device section,

you can select GDB Server, I-jet, Simulator, etc. In
Chapter 2, we will use the simulator to check the
operation.
On the right side of the figure below, there is also
a Simulator in the category, but there are no extra
options even if you select it.

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 42

2.4 Understanding the RISC-V project as a
whole

In embedded software, it is not enough to create
a C language source program. You need to
configure the CPU cores in the startup code,
configure the peripheral hardware, and initialize
the variables. To do this, you also need to create
a linker configuration file. Here, we will explain the
basics.

2.4.1 Creating sample 2

First, take a look at the following simple C
program. This is a simple program that adds
the values of two arrays, da, and db, to the array
ha, subtracts the values of the arrays da and db,
stores them in the array hb, and updates the
arrays da and db with the result.

At this time, the following settings are made
so that only RV32I instructions are used in the
program.

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 43

2.4.2 Running sample 2

After doing Make, click Download and Debug. In
the debugger, select the variable da in the editor,
as shown below, right-click, and select “add to
watch.” Do this for the variables db, ha, and hb.
Then, when you arrive at the main function,
you can see that all the variables have been
initialized. Who did this? Other things are
essential to run the program but are not
done in the program. The following content is
implemented in the startup code.

•	 Arrays da and db need to be initialized with
initial values.

•	 Arrays ha and hb are zero and need to be
initialized.

•	 Configuring the Stack Pointer
•	 Configuring the Global Pointer
•	 Interrupt vector setting (you don’t have to do it

because you won’t use an interrupt this time)
However, with the default settings, the debugger
is running as far as the main function at the start,
so you need to change the optional setting to
see the startup code run. As shown in the figure
below, uncheck [Run to] in [Debugger]-[Setup].

If you start debugging again with [Download
and Debug], you can check the operation of
the program immediately after the reset. The
illustration below is illustrated, but an important
point will be added. RISC-V provides a register
called GP (Global Pointer). When accessing the
memory, it can be executed faster than without
such a mechanism by having it calculated at the
offset from the GP value. At this time, you can see
that it is set with two instructions, LUI instruction
and ADDI instruction.
The lui instruction is an instruction that allows
you to set a 20-bit immediate value on the upper

side of the register. In addition, addi can specify
a 12-bit value immediately. By using these two
instructions, the 32-bit address is set to GP.
With IAR, you can choose between two options:
leave the compiler to initialize variables or let the
user do it in their code. In this case, the linker
configuration file is set to leave the initialization
to the compiler, so the variable initialization is
performed in the function __iar_data_init2. For
details, please refer to the ILINK documentation
[2].

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 44

In the startup code, the global pointer value, the
stack pointer value, and the vector table value
were set. At this time, the method for checking
the address utilized by the startup code will
be explained. The addresses of variables and
functions placed by the linker are listed in the
MAP file. Once the MAP file is made, it will be
displayed under Output on the Workspace
screen. In this case, it is a file called P.map, so
you can open it in the editor screen by double-
clicking it.

In the MAP file, where there is an ENTRY
LIST, you can check the placement address
of variables and functions (see the figure
below). $$Base indicates the beginning of the
region, and $$Limit indicates the next address
of the region. For example, in CSTACK, the
0x800000a0 to 0x800010a0 area is defined
as a stack. It is actually used in the area up to
0x800000a0~0x8000109.

Now__iar_static_base, let’s take a look at
$$GPREL as there are things to confirm. In
order to access memory using a global pointer,
EWRISCV needs it to be specified in the linker
configuration file. The specific specification is
shown in the figure below. To briefly describe
the linker configuration file, define the memory
area to be used in the “define region.” Here, we

have defined the RAM and ROM area. What is
important is the definition of the block RW_DATA
on line 38. In this block, the data of the read-
write attribute is placed, but here, it is specified
that it is accessed relative to GP because it is
with static base GPREL. This RW_DATA is placed
in the memory area RAM_region32. For more
information on ILINK, see Reference [6].

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 45

2.4.3 About GP relative

If you create software without being aware of
assembler instructions on a daily basis, you
may not be able to understand the GP relative.
Here, how are C variables accessed GP-relative?
Consider the case where you don’t use GP
relative.
In the previous program, we extracted the part
implemented in GP relative. The value set for GP
is __iar_static_base 0x80000058 denoted by
$$GPREL. On the other hand, the variable ha is
0x80000054, and the variable hb is x8000007C.
In order to access the variable ha or the variable
hb, this address must be set in a register.

To set a 32-bit address in a register, for example,
you can execute a combination of LUI and ADDI
instructions. However, if you set it every time you
access a variable, the code size will increase, and
the execution time will be slow.
GP relative is a method of calculating the address
of the memory access starting from the address
in GP. In the figure below, in order to write ha[i],
the value of the GP register is first copied to
register a2, the value of index ix4 (because it
is an int type) is added to a2, and the value is
written with the sw instruction. Where the index
is multiplied by 4, it is implemented by shifting to
the left.

Let’s see what happens if we don’t use GP
relative. In order not to use GP relative, it is
necessary to change the linker settings. By
default, the linker settings of IAR were set to use
GP relative, as shown in the upper part of the
figure below. Until now, the data to be accessed

relative to GP (in this case, the read-write data
attribute data) was stored in a block RW_DATA,
and the block was placed in the RAM_region32.
In order to avoid using GP relative, we stopped
defining block RW_DATA and placed rw data in
the RAM_region32 as it is.

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 46

If you leave it as it is, you will get an error in the
startup code. In addition, the part where the GP is

configured is commented out in the startup code
(cstartup. s).

As a result, the generated code has changed as
follows: It is supposed to use the lui instruction
and addi to set the address. The point is that the
number of instructions when executing the same

process is different when GP relative and this GP
relative are not used. In many cases, using GP
relative produces shorter code. Shorter code is
generated, which also results in faster execution.

Let’s examine the output instruction sequence
with and without GP relative. It is clear that the
part that sets the variable’s address is GP relative,

which can be done with one instruction. However,
if GP relative is not used, two instructions, lui
instruction, and addi instruction, are required.

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 47

In summary, GP relative is an important feature
of using RISC-V, and it may result in a smaller
code size and faster execution speed. In order to
generate GP-relative code in EWRISCV, you need

to define a block with a static base GPREL in the
linker configuration and place the block with a
static base.

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 48

2.5 C extension instructions

The basic instruction of RISC-V is a 32-bit
instruction. However, this C extension provides
16-bit instructions. As a result, the program’s
code size can be reduced, so the limited FLASH
(ROM) area can be used effectively. Let’s see how
much of a difference it actually makes.

The project created previously in 2.4 used the
RV32I instruction set. This time, an attempt will
be made to enable the use of the C extension
instruction as well. In the project options, check
[C] in [General Options]-[Target]-[Standard
Extensions].

Let’s compare the results. It affects the
code memory and the read-only data in the
arrangement. In terms of code, 704 bytes
have been drastically reduced to 472 bytes.

Since the amount of memory that can be used
in embedded systems is smaller than that
of personal computers, C expansion is very
effective.

 RV32I RV32I+C
readonly code
memory

708 476

readonly data
memory

108 112

readwrite data
memory

4,300 4,344

Let’s use a different example. The following code
is a function that adds eight arguments and
changes the result.

This is the left of the figure below when it is
compiled with RV32I, and the right figure below
when it is compiled with RV32I + C.

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 49

Extended instructions are prefixed with c., so
addition becomes c.add instructions. On the
RV32I, the add instruction specified the operation
with three operands, but the c.add instruction is
now 16 bits, so it can only take two operands. The
first operand is both the register that defines the

result and is also the input. Suppose you write the
instruction c.add a0 a1 in mathematical terms,
a0=a0+a1. If you check the machine language in
the figure below, you can see that the RV32I is 32
bits (8 hexadecimal digits), but the C extension is
16 bits (4 hexadecimal digits).

There is a possibility of reducing the code size
by using C extension instructions (Compress).
Not all instructions have extended instructions.
If you are coding this Compress instruction
manually, the important point is to “use or not
to use,” but for those who use C or C++, you

can switch with the compiler option. In order to
make effective use of FLASH (ROM), which is
limited in embedded systems, we would like you
to consider using it on the premise that it will be
used.

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 50

2.6 M Extension instructions

The M extension instruction allows you to perform
integer multiplication and division. If there is
no M extension, multiplication and division will
be performed by software. Looking only at the
C/C++ level, wouldn’t it be good if it could be
executed? You might think. So, the focus now is
to look at the actual code here and see what the

code generated with and without the M extension
instruction will look like.

2.6.1 Creating sample 3

Now, let’s look at the generated code for the
following program. In this project, we will first use
only the RV32I.

In this case, we are using multiplication (*) and
division (/) in the program. In this project, settings

are configured for RV32I. There are no hardware
multiplication or division instructions.

In the figure below, the variables and functions
related to this time from the map file on the left
have been extracted. __iar_imul to calculate
multiplication and __iar_idivmod to calculate

division are implemented. On the right side of the
figure below, the generated code for the part to
be multiplied and divided is included.

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 51

Make a note of the code size at this time.

2.6.2 Enabling M extension instructions

Now, let’s try to enable the M extension
instruction. Set the options as follows:

The generated code should look like this: The
map file on the right side of the figure below
does not have a software multiplication/division

function. In the generated code on the right of
the figure below, you can see that the mul and div
instructions of the M extension are used.

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 52

Looking at the code size at this time, it was as
follows.

Only the code memory is different with the M
extension. 820 bytes equals 500 bytes, which
makes the code size about 60%. However, it is
not always 60%. It means that the number of
libraries executed by the software has increased
by about 300 bytes, so the impact will be smaller
for large-scale software.

When the execution cycle was examined at this
time, the following was discovered. The execution
cycle fluctuates depending on the data, so it’s
good to look at this example as a reference, but
the multiplication and division performed by
hardware can be performed at high speed.

 RV32I RV32I+M
c = a*b; 24 4
d = a/b; 59 4

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 53

2.6.3 RV32M

The extended instructions on the RV32M are
as follows. I will also explain how to name the
instructions at this time. MUL, DIV, and REM are
the multiplication, division, and extras of basic
32-bit instructions. In multiplication, 32-bit and
32-bit results take 64-bit values. The instruction
MULL stores the result of the upper 32 bits.
At this time, it is necessary to use MULH,
MULHSU, and MULHU, depending on the value
of the source register signed or unsigned. In
the case of MULH, the two sources are signed,
in the case of MULHU, the two sources are
unsigned, and in MULHSU, rs1 is signed and rs2
is unsigned.
•	 MUL rd,rs1,rs2
•	 MULH rd,rs1,rs2
•	 MULHSU rd,rs1,rs2
•	 MULHU rd,rs1,rs2
•	 DIV rd,rs1,rs2
•	 DIVU rd,rs1,rs2
•	 REM rd,rs1,rs2
•	 REMU rd,rs1,rs2

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 54

2.7 A extension instructions

The RV32A’s atomic instructions are the following.
These are required when multiple processes are
running simultaneously. Typically, in a multitasking
environment with an operating system (including
RTOS), various tasks are used to access shared
data correctly. When the OS is not used, it is
generally used to manipulate shared data in
interrupt processing.
•	 AMOSWAP.W rd, rs2,(rs1)
•	 AMOADD.W rd, rs2,(rs1)
•	 AMOXOR.W rd, rs2,(rs1)
•	 AMOAND.W rd, rs2,(rs1)
•	 AMOOR.W rd, rs2,(rs1)
•	 AMOMIN.W rd, rs2,(rs1)
•	 AMOMAX.W rd, rs2,(rs1)
•	 AMOMINU.W rd, rs2,(rs1)
•	 AMOMAXU.W rd, rs2,(rs1)
•	 LR.W rd, (rs1)
•	 SC.W rd,rs1,(rs2)

Instructions preceded by AMO perform Read-
Modify-Write. AMO is an abbreviation for atomic
memory operation. For example, AMOOR. W
rd, rs2, (rs1) performs the following actions
inseparably:
1.	 Read the value from the memory address

indicated by 1.rs1
2.	 OR with the value read from memory and the

register value of rs2
3.	 At the same time as writing the result of the

OR to memory, the value of rs2 is stored
in register rd. LR. W and SC.W are Load-
Reserved and Store-Conditional instructions.

•	 LR.w rd, (rs1) Reads the memory value that
is rs1 and stores it in register rd. Record the
reservation for that memory.

•	 SC.w rd,rs2,(rs1) If there is a reservation
for the address indicated by rs1, write the
contents of rs2, and if the store is successful,
the value of rd is set to zero. Otherwise, it
writes a non-zero error code.

The following examples of how to use the Load-
Reserved and Store-Conditional instructions are
shown in the specification.

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 55

2.7.1 Creating sample 4 with A extension instructions

A extension instructions are not generated from
code written in C/C++ language. It must be
written using assembler instructions or an inline
assembler. Let’s actually look at a sample that

The C language and assembler programs are
shown below. Let’s start with the C code on
the left. The fact that the @ 0x80000000 is
appended to the declaration of the variable d2
is an extension of IAR. This function places the
address of the number after @ in the variable.
This places the variable d2 in the 0x80000000.
Inside the main function, we are calling function
f001, but the function f001 is defined in the
assembler.
Let’s take a look at the assembler code on
the right. Many people have not seen many
assembler programs, so that will be explained
in detail here. In assembler, the items described
from the first column are described as labels.
Items other than labels should be listed in the
second column or later. In this assembler file,

only the fifth line, f001, is listed in the first column.
In assembler, both variables and functions are
labeled with names, so keep this in mind. Then,
in the second line, public f001, the label f001 can
be referenced from an external file. If this public
definition is not present, it will be accessed only
by file.
In the fourth line, the section is set to place the
object to be described from here. The section
name is “.text” and the memory type is CODE.
There are three types of memory: CODE, CONST,
and DATA. They mean codes, constants, and
variables, respectively. The NOROOT after it is an
instruction that if this part is not needed, it can
be deleted. If you want to keep functions that you
don’t use, use the keyword ROOT. The last (2) is
aligned with 2 bytes.

calls assembler from C and runs the AMOADD
instruction in the assembler.
Set the following to enable the use of the A
extension in the project options.

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 56

From line 6 onwards, it is the part that is
programmed using assembler instructions. This
explanation is attached to the figure below. Note

also that the assembler file will result in an error if
there is no END at the end.

The result of the terminal I/O that will be executed
is also attached. You can see that amoadd
returns the value before the change.

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 57

2.8 N extension instructions

As explained previously in the 1.4.5 operating
mode, interrupts cannot be received in user
mode. This N extension enforces interrupts

CSR address Name memo
0x000 ustatus User Status Register
0x004 uie User level interrupt enable register
0x005 utvec User interrupt handler base address
0x040 uscratch Scratch register for user interrupts
0x041 uepc user interrupt PC
0x042 ucause User exception cause
0x043 utval User trap value register
0x044 uip User interrupt pending register

The following instructions are added as additional
instructions: This is an instruction to return from
an interrupt at the user level.
•	 uret

and exceptions at the user level. CSR has been
extended, and instructions have been added for
interrupting at the user level.
The following are the enhancements of CSR.

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 58

2.9 Custom instructions

RISC-V is characterized by modular configuration
and custom instructions . EWRISCV incorporates
a mechanism for managing custom instructions,
which will be introduced here.

2.9.1 Opening the IAR information center examples

From the EWRISCV screen, open [Help]—
[Information Center]. The Information Center
provides a wide range of information, including a
sample project. Now, select Example Projects.

Then, the screen will change, select [Simulator],
and then select [Open Project] under [Custom
Instructions]. You will then be asked which folder

to store, so please specify it. This will open the
project.

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 59

2.9.2 RISC-V operation codes

RISC-V allows custom instructions. However,
the following operation codes are determined.
In this example, we are using Reserved space.

Before you can create custom instructions, you
need to understand the six instruction types
in RISC-V. Depending on the instruction, an
immediate value may be specified, or a register
may be specified, and the number of registers is
different for each.
•	 R type: An instruction type that specifies two

register inputs and one register output, such
as R=R+R

•	 I type: An instruction type that specifies one
register input, an immediate value, and one
register output, such as R=R+I.

•	 S-type: Instruction type that specifies how to
write (store) to memory, etc.

•	 Type B: An instruction type that specifies two
registers, such as a conditional branch

•	 U type: Instruction type that handles 20-bit
immediate values

•	 J type: Instruction type used for unconditional
jumping, etc.

2.9.3 Custom instruction

Now, in the sample based on reference [6],
we implement the integer mod operation
(remainder). Let’s decide on the custom
instruction at that time. The mod arithmetic
instruction is of the form R = R%R, so it is an R
type. For R-type instructions, it is necessary to

This was created with reference to [6], and while
it has not been modified, if it were to be actually
made, it might be advisable to utilize the sections
described as custom-0 / custom-1 / custom-2 /
custom-3.

determine inst (the part described as an opcode),
funct3, and funct7. For rd, rs1, and rs2, specify
the register number in the same way as other R
instructions.
• The value of inst[6:0] is 1101011 (0x6B) in binary.
• The value of funct3 is 000 (0x0) in binary.
• The value of funct7 is 0010000 (0x10) in binary.

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 60

2.9.4 Using custom instructions in code

In EWRISCV, it is possible to write inline
assembler code that corresponds to custom
instructions. Please refer to the manual for
details, but here, let’s check the implementation
of the mod operation instruction decided in 2.9.3.
I’m using an inline assembler to use custom
instructions in C. .inst r is an R-type instruction,

If you look at the actual build result with this, it
will be as follows. The instructions in question
are implemented in 32-bit instructions and

are 0x20b5056b. Unfortunately, for custom
instructions, the EWRISCV disassembler display
is Unknown32.

The analysis of the 0x20b5056b machine
language is as follows. In machine language, it
is specified by the register name, so rs1 is x10

and rs2 is x11. If you write the ABI name, rs1 is a0,
and rs2 is a1. A0 and A1 are the first and second
arguments of the function.

followed by the values of inst, funct3, and funct7
as 0x6B, 0x0, 0x10, and then the registers. %0 is
the destination and %1 and %2 are the sources.
Behind that, we are mapping variables with
%0,%1,%2. For %0, %1, and %2, the compiler
allocates them to the appropriate registers, which
is a convenient notation when using an inline
assembler in C.

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 61

2.9.5 Using custom instructions in the simulator

The EWRISCV simulator is not capable of
executing custom instructions. But this project
can be executed properly. In fact, we have a
breakpoint at the address where we put the
custom instruction, and we have a macro function
that executes when the breakpoint is reached.

Here, we will introduce only a part, so if
necessary, please check it while actually running
the sample with EWRISCV. A breakpoint is set,
and the macro function CustomInst_mod is
executed when it is set. In this macro function,

registers rd, rs1, and rs2 are analyzed to simulate
MOD operations. Also, when this macro function
is executed, PC=PC+4. This makes it possible
for the simulator to execute custom instructions
without knowing them.

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 62

2.10 About function calls/ABIs

2.10.1 C language functions

Let’s take a look at what kind of RISC-V
instructions are used when calling and returning
from C functions.

The following is the output assembler instruction.
Here, the optimization is compiled on low. To
call the function add1 from the function foo, we
are calling call add1. In fact, there is no call in the
RISC-V instruction explained earlier. The call is

a pseudo-instruction for the JAL ra imm. ret is
a pseudo-instruction of jalr x0, 0(x1) and is the
return instruction from the function. x0 is the zero
register, and x1 is the ra (return address).

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 63

2.10.2 Rules for calling functions

Here, we will use the RV32I as an example to
explain the ABI. First, we will classify the registers
into three categories.

1.	 Scratch registers t0~t6, ft0~ft11, a0~a7,
fa0~fa7

2.	 Storage registers s0~s11 and fs0~fs11,
3.	 Application-specific registers SP/x2, GP/x3,

RA/x1

The scratch register is a function call, and its
value can be changed within the function to
become an OK register. On the other hand, if you
want to change the value of a save register in a
function, you must save it programmatically and
return it when the function ends. The special-
purpose registers are the stack pointer sp, the

global pointer gp (used for variable access), and
the return register ra, which holds the function’s
return value.
Now, let’s take a look at what happens when the
function is called. Integer values and pointer
values are passed using registers a0~a7. If it is
missing, use the stack. The return value on the
RV32I is a0. For 64-bit data, use a0 and a1 to
return.
Now, let’s see how the function call is realized.
The following function has 12 arguments of
type int. Up to 8 arguments can be passed, so
four are passed in a stack. The following is the
generated assembler code, but at the beginning
of the function, we use the lw instruction to load
the values of four variables into the temporary
register via the stack. The other eight variables
are passed in the a0~a7 registers.

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 64

2.11 About the output of EWRISC-V

At the conclusion of this chapter, a summary
of EWRISCV’s output will be provided. The
output destination folder is specified in [General
Options]-[Output] of the project options.

2.11.1 Executables/libraries

In the folder where Executables/Libraries is
specified, an ELF format executable format or
LIBRARY is generated. It will also be output here
when the HEX/SREC format is output with Output
Converter.

2.11.2 Object files

The .o file that results from compiling the C/C++
file is output to this Object Files folder.

2.11.3 List files

MAP files and LIST files that can be generated at
compile time are output to this List Files folder.
If you generate assembler files during C/C++
compilation, they will also be generated in this
folder.

2.11.4 Browse files

EWRISCV has a source code input support
function. For example, it suggests the members
of a structure or completes functions and
variables while typing. You will see the following
choices: The information is currently stored in this
folder.

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 65

This source code analysis function can be turned
on and off. If it takes a lot of time to analyze
the source code, EWRSIC-V may be stopped.
At that time, it is possible to find the cause by

temporarily stopping the analysis function. You
can open the IDE options with [Tools]-[Options]
and control them with [Project]-[Generate Browse
Information].

2.11.5 MAP files

Here is a brief description of the MAP file
generated by EWRISCV. Some of the output may
increase or decrease depending on options and
code, but the basic part will be explained. The
basic parts are the following eight parts.

•	 LINKER Configuration OPTION
•	 RUNTIME MODEL ATTRIBUTES
•	 HEAP SELECTION
•	 PLACEMENT SUMMARY
•	 INIT TABLE
•	 STACK USAGE
•	 MODULE SUMMARY
•	 ENTRY LIST

The MAP generated in sample 2 will be explained.

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 66

MAP: Linker Configuration Options

At the top of the MAP file, you will find the linker
(ILINK) options. Since EWRISCV is often used in
an integrated development environment (IDE),
it is necessary to open the screen to check the
options, but it is also possible to do it with this
MAP.

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 67

MAP:RUNTIME MODEL ATTRIBUTES

In EWRISCV, we link the runtime libraries, but we
record the options and versions at that time. In
the following, DLib is used for __SystemLibrary, so
the standard library of EWRISCV is specified, but
users can also include their libraries.

MAP:HEAP SELECTION

EWRISCV allows you to choose the algorithm to
be used on the heap. This is also output to MAP
so that you can understand which library was
used when linking.

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 68

MAP:PLACEMENT SUMMARY

THE PLACEMENT SUMMARY CONTAINS
INFORMATION ABOUT THE PLACEMENT
OF SECTIONS, BLOCKS, AND SO ON The
PLACEMENT SUMMARY contains information
about the placement of sections, blocks, and
so on. The first half contains information about
the linker configuration file, and the second half
contains information about the placement of
sections.
First of all, the information about the linker
configuration file in the first half, such as block
information, placement information, initialization
information, etc. Block information is defined
as a group that specifies the size or groups of
sections. For example, a block called MVECTOR
defines a block (with 128 alignments) that
contains read-only in the section .mintvec. Blocks
such as HEAP and CSTACK are defined with a
size of 4 KB and an alignment of 16. Placement

is performed in a statement that includes place,
and HEAP and CSTACK of read-write data
and blocks are specified to be placed in the
memory area 0x8000’0000~0x8003’ffff. These
descriptions reflect the contents of the linker
configuration file.
The important point is that “No sections matched
the following patterns.” This is output when there
is a description in the linker configuration file
to place it, but it is not in the program. Here, it
is stated that there is no read-only data in the
section .mintvec placed in the block MVECTOR.
Whether this is correct or incorrect can only be
known by the person who created the program.
This time, we didn’t use the section .mintvec
in the program. However, EWRISCV deletes
variables and functions that are not directly
referenced, so it is important to check whether
variables and functions that are indirectly
referenced have been deleted.

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 69

The second half of the placement summary
describes where sections and blocks were
actually placed. There are five columns here:
Section, Kind, Address, Size, and Object. The
Section column contains the section or block’s

name, the Kind column contains information
about the region, including its Address and Size,
and the Object column is the location (.o) where
the file is defined.

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 70

The following is an explanation of the most
commonly used kinds.
•	 ro code: The code of the Readonly attribute
•	 const: Constants and other data
•	 inited: Non-zero initialization variables or

regions

•	 zero: Initialization variable or region at zero
•	 uninit: Uninitialized variables or regions

MAP:INIT TABLE

INIT TABLE prints information about the
initialization of variables. This area is output when
the compiler initializes variables. Also, if there are
no variables to initialize, it will not be output.
In the C language, there are two types of variable
initialization: zero initialization and non-zero
initialization. In general, zero initialization is a
.bss area, and non-zero initialization is a variable

initialization of .data. In the following description,
the initialization function __iar_zero_init2 to be
used for the Zero part and the beginning address
and size of the area to be initialized by zero
are described, and the initialization function
__iar_copy_init2 to be used in the Copy part and
the beginning address and size of the area to
be initialized to non-zero are described. If you
change the startup code or write your own, this
initialization function must be called correctly.

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 71

MAP:STACK USAGE

STACK USAGE is output by enabling the stack
analysis function in the linker options. Since it is
not specified in detail, EWRISCV analyzes the
stack amount from the program entry. First, three
types of interrupt, Program entry, and Uncalled

function are displayed. For interrupts, analysis is
performed using the handler specified in the __
interrupt as an interrupt. Program entry analyzes
the stack usage from the program entry that
starts execution from the time of reset. If there
is an Uncalled function that is not called by any
function, it will also be displayed.

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 72

STACK USAGE is output by enabling the stack
analysis function in the linker options. Since it is
not specified in detail, EWRISCV analyzes the
stack amount from the program entry. First, three
types of interrupt, Program entry, and Uncalled
function are displayed. For interrupts, analysis is
performed using the handler specified in the __
interrupt as an interrupt. Program entry analyzes
the stack usage from the program entry that
starts execution from the time of reset. If there
is an Uncalled function that is not called by any
function, it will also be displayed. The following
cases include cases where EWRISCV analysis
cannot be performed correctly.
•	 If you use a function pointer or create a

program with a fixed jump address
•	 Contains functions written in assembler
•	 When the same function is executed multiple

times, e.g., in a recursive function

Also, if you use a real-time OS (RTOS), you will
need to use stack usage for each task.
If you want to analyze correctly or want the
necessary information, there are two ways to
do it with EWRISCV. There are two methods:
#pragma, which is to specify it in the source code
or a separate file. Please refer to the manual
for details, but for a simple example, a sample
below is provided. If stack analysis is required
separately, such as when task1 and task2 below
are tasks on the RTOS, specify the #pragma
call_graph_root before the function. If EWRISCV
cannot understand the function call due to a
function pointer, etc., specify the function to be
called with #pragma calls.

It is also possible to provide information for
stack analysis in a separate file. A separate file
has more content that can be specified. Of the
following three, the top two are #pragma and
have the same specifier content. The third is for
recursive calls. If there is a recursive call, the
compiler does not know how many times it will be

executed, but by specifying the upper limit, it is
possible to perform stack analysis correctly.

call graph root: task1, task2;
possible calls fp: foo, goo;
max recursion depth recursive: 32;

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 73

MAP: MODULE SUMMARY

In addition to each file, the MODULE SUMMARY
outputs the size of each library by dividing it
into three categories: code size for each library,
read-only data (data that does not change, such
as constants), and read-write data (variables,
etc.). Since the size of the module may fluctuate
slightly with the final executable file due to
optimization by the linker,

First, the size of the user code is displayed,
and then it becomes a library. Libraries are
meaningful in their names. In the case of dbg-
rv32i.a, the instruction set is RV32I in the I/O
library for debugging. di-rv32i provides a default
interrupt handler, dl-rv32i.a includes printf/
scanf and dlmath-rv32i.a is a C math library. This
may change the library used by the extension
instructions.

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 74

MAP:ENTRY LIST

The part that embedded engineers use the most
is this Entry List. In the Entry List, you can check
the placement status of functions and variables.
An Entry is a function, variable, or label name, and
to the right of it is the address, size, type, Gb/Wk,
and object. In terms of type, Code is a function,
and Data is a constant or variable. Gb is a globally
defined variable/function, Wk is a function/
variable with a weak attribute, and Lc is a locally
defined variable/function.

As for objects, some created by the linker have a
specified file name. If it looks like [2], you can see
which file was linked from below. Even if you use
a library, it is originally a C or assembler file, so it
has a *.o name, and the entity is indicated in [].
Finally, there is information about the size of the
program, as well as the number of warnings and
errors during the build.

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 75

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 76

3. Learn RISC-V
on real hardware

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 77

3. Learn RISC-V on real hardware

3.1 Using the GigaDevice GD32VF103

We will use the Wio Lite RISC-V board equipped
with Gigadevice’s RISC-V, which is inexpensively
available as a RISC-V evaluation board. As of
March 2024, this product is sold at Digikey for
11 USD. It will be introduced as it serves as a
suitable example, including how to connect the
debugger.
This board is equipped with a WiFi module and
ESP8266 from Espressif, and a Gigadevice
GD32VF103, but only the GD32VF103 is used
here.
GD32VF103CBT6 specifics: :
•	 RISC-V compliant little-endian RV32IMAC

(32GPRs) ;
•	 Machine (M) and User (U) Privilege levels

support;

I-jet can be connected with a JTAG connection,
but let’s check the pins coming out of the board
at this time. As shown in the figure below, there
are pins related to JTAG on the board. Six ports
(signals) are available in the area enclosed in the
red box below.
•	 TCK: JTAG clock

•	 TMS: Used to transition JTAG TAP controllers
•	 TDO—JTAG data output
•	 TDI: JTAG data entry
•	 3V3: 3V output used as power supply
•	 GND: Ground
On the evaluation board, it is placed in the area
surrounded by the red line below.

•	 Single-cycle hardware multiplier and Multi-
cycles hardware divider support;

•	 Misaligned load/store hardware support;
•	 Atomic instructions hardware support;
•	 Non-maskable interrupt (NMI) support;
•	 WFI (Wait for Interrupt) support;
•	 WFE (Wait for Event) support;

3.1.1 Debug probe connection

A hardware (debug) probe is required to
download software to the GD32VF103 mounted
on the board and debug it. Here, we will use the
I-jet from IAR. It is connected and used as shown
in the figure below. On the PC, the software is
built using EWRISCV and then downloaded into
the MCU board using I-jet.

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 78

On the other hand, let’s examine the I-jet side.
The figure below shows the MIPI-20 connector,
which has a 20-pin signal.

TCK, TMS, TDO, TDI, and GND can be connected
to the corresponding pins on the board, and the

I-jet’s VTref pin is connected to 3V3. This VTref is
mandatory to set the signal level.

Since the small MIPI-20 connector is difficult to
handle, we prepared a pitch conversion board
and connected it to the GD32 JTAG pins using a

breadboard and jumper wires. Note that this type
of connection is not recommended for high-
frequency signals.

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 79

3.1.2 Checking the connection with IAR I-jet

Once the board, I-jet, and PC are connected, we
should check whether the connection is correct.
An evaluation board with a pre-mounted MIPI-
20 connector always makes a reliable JTAG
connection. Still, in this example, the connection
may be bad because we used a breadboard and
connected the pins manually.

When you install EWRISCV, you will find a program
called Emudiag.exe in

under the folder where the tool was installed.
When it starts, click [Connect] and click Test
JTAG... Click.

When the JTAG Configuration screen appears,
click [Autodetect]. After clicking, you will see

the area circled in green. If the connection is
successful, you will see these results.

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 80

An example of a connection not being
established successfully will also be shown. This
is an example of disconnecting the TMS from a
correct connection. If JTAG is not able to connect

properly, you will get an error like this. In such a
case, please stay calm and make sure that the
connection is properly checked.

When the analysis is complete, exit the Emudiag
application with [OK]-[Done]. If this is running,
you may not be able to connect from EWRISCV.

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 81

3.1.3 LED blinking: creating sample 5 using GPIO

Look at the schematic of the Wio Lite RISC-V
board to check the LED connections. Since the
LED is connected to the PA8, we will flash this
LED.

Now, let’s create a project. From EWRISCV, select
[C]-[main] in [Project]-[Create New Project].

Specify the project file name as appropriate. This
time, we have named it S3P01.

Select the folder you want to create a project and
give it a project name. Next, execute [File]-[Save

Workspace] to name the workspace. Please
specify the workspace file name here as well.

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 82

You now have a project and a workspace with one
main.c.

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 83

For EWRISCV, let’s specify the microcontroller
to be used this time. Double-click the check
next to the project name in the workspace to
open the option settings screen. In the figure

below, the project name is “S3P01.” Double-click
the red arrow 1. On the options screen, select
the GigaDevice GD32VF103CBT6 in [General
Options]—[Target]—[Device].

In chapter 2, detailed settings were required
whether to use extended instructions, etc., but
those supported by EWRISCV can be set by
simply specifying the device. As for the settings
related to instructions, it is okay to leave the
default. However, if it is necessary to align the

options in order to use different microcontrollers,
the user should change them. The following
are the settings for the options related to the
instructions when the current GD32VF103CBT6 is
selected.

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 84

The advantage of the EWRISCV device support
is that header files for peripheral access can also
be used. #include <gigadevice/ioGD32VF103.h>
allows peripheral access.

In order to blink the LED this time, it is necessary
to enable the GPIOA clock and set the PA8 to
output and PushPull settings.

Let’s take a look at the definition in the header
file in the APB2 Peripheral Clock Enable Register
(APB2EN). The left side of the figure below shows
the part where APB2EN is defined. It is a union,
and if you want to access it with 32 bits, use RCU_
APB2EN. If you want to access it with a bitfield,

use RCU_APB2EN_bit. Use XXX, where XXX is
the name of a separate field.
In the previous example, only the PAEN bit is set,
so RCU_APB2EN_bit. PAEN=1; it is described in.
The same is true for the GPIOA’s CTL1 and OCTL.

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 85

For devices that support EWRISCV, a linker
configuration file is usually provided in addition to
the header file. This time, the linker configuration
file is also selected by selecting the device as

GD32VF103CBT6. You don’t have to understand
the contents of this file at first to create a
program.

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 86

3.1.4 Set up the debugger and start running

Now that the program is ready, it is intended to be
downloaded and executed. In this case, I-jet

will be used for the hardware probe, so select
[Debugger]-[Setup]-[Device] as [I-jet].

When the device is supported by EWRISCV,
the flash loader can be used as an option in
the [Debugger]-[Download] part. This may
be the case with only the internal flash or
with the external flash memory used on a

particular evaluation board. In the case of
GD32VF103CBT6, an on-chip flash is supported.
Please note that if you do not select Use Flash
Loader, you will not be able to write to the flash
memory area.

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 87

If you want to support external flash memory even
with a compatible device, or if you’re going to
write a program to the flash memory of a device
that does not yet support it, you need to do it
yourself. In this case, there is a manual called
[FlashLoaderGuide.ENU .pdf] in the folder where
EWRISCV is installed:

So, you can implement it by referring to this.
There are also examples of flash loader source
code in the folder:

For example:

Finally, the LED blinks when you run the program.

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 88

3.1.4 Learning about interrupts

It is quite difficult to create an interrupt program
with a microcontroller for the first time. EWRISCV
has a sample of the GigaDevice GD32VF103V-
EVAL board, so even though the board is
different, an attempt will be made to use it in

When you come to ”Example Projects”, open
[GigaDevice GD32VF103V-EVAL]-[TIMER0
6-steps] (see figure below).

this example. It is difficult to create an interrupt
program for the microcontroller you are using
from scratch, so the fastest way to learn is to use
a sample. The sample is in the information center,
so open the information center of EWRISCV.
Then, click Example Projects.

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 89

This will open this project in EWRISCV by
specifying the save folder.
There is not only one interrupt in the GD32VF103,
but it can be switched and used in the settings.
RISC-V defines CLIC (Core Local Interrupt
Controller) and CLINT (Core Local INTerrupt),
ACLINT, etc. CLIC and CLINT will be better

understood by looking at references [7]. CLINT
is a simple interrupt controller that handles
internal interrupts and handles external interrupts
together with MEIP/MEIE. The PLIC (Platform-
Level Interrupt Controller) is configured to handle
external interrupts at that time. MIP and MIE of
CSR manage interrupts in the figure below.

On the other hand, the CLIC is managed using
management registers without using MIP/MIE.
You can set the priority of the interrupt, the trigger
type, and the vector response for each interrupt.
In GD32VF103, ECLIC (Enhanced Core Local
Interrupt Controller) is implemented based on
CLIC. Not everything can be explained here, but
the important parts will be covered. So, if you
want to investigate in detail, please check the
operation while looking at the sample.

First, let’s examine the functions used in the
sample code. The following functions are called
intrinsics functions provided by EWRISCV and
define functions that cannot be written in C but
are often used.

•	 __disable_interrupt()—Disables CPU
interrupts.

•	 __set_bits_csr(reg, val): Sets the bit with the
value of val for the CSR specified by reg.

•	 __clear_bits_csr(reg,val)—Clears the bits with
the value of val for the CSR specified by reg.

•	 __write_csr(reg,val): Sets the value val for the
CSR specified by reg.

•	 __read_csr (reg): Reads the CSR specified by
reg and returns the contents.

In the sample, the basic settings for interrupts
are implemented in the function __low_level_init.
MTVT, MTVT2, and MTVEC are configured. As
explained in the figure below, it is set to operate
in CLIC mode and call irq_entry when an interrupt
occurs and trap_entry when TRAP/NMI occurs.

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 90

On the other hand, interrupt vectors are created
in arrays, and zeros are set to parts where there
are no handlers. Functions are specified in the

array, and the interrupt handler calls individual
functions depending on the interrupt factor.

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 91

Now, let’s move on to the interrupt handler. We
will explain how to define a handler in EWRISCV.
EWRISCV provides __interrupt as an extended
keyword. You can define it as a handler by adding
the following __interrupt before defining the
function. The interrupt handler has no arguments
and no return value, so the arguments and return
value are always void.

So why should you use this __interrupt? Describes
the following: If this __interrupt does not exist, it
will be a normal function. As explained in [2.10.2
Rules for Calling Functions], the use of registers
when calling functions is as follows. The scratch
register is a register that the function can freely
rewrite. When called as a function, the caller
of the function saves the value of the scratch
register on the stack and calls the function. This
allows the called function to change the value of
the scratch register freely.

1.	 Scratch registers t0~t6, ft0~ft11, a0~a7,
fa0~fa7

2.	 Storage registers S0~S11 and FS0~FS11,
3.	 Application-specific registers sp/x2, gp/x3,

ra/x1

The registers used by the handler must be saved
to the stack when an interrupt occurs, and the
value of the register must be returned when
the handler exits. Otherwise, when the interrupt
handler returns, the value of the register will
change, and the behavior will be strange. Of
particular concern is the scratch register part.
The figure below shows how the generated
code changes depending on the presence or
absence of __interrupt. On the left is the interrupt
handler with the __interrupt, and on the right is
the normal function. On the interrupt handler
side, all registers used in the handler are saved,
but only the stack pointer is saved in the function.
You can see that calling the function func itself
is the same as calling it from the function when
calling it from the handler (green part). After the
processing of the function func is completed
and the result is stored in memory, it is a return
process of the saved register.

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 92

The actual interrupt handler definition is shown
in the figure below. In this program, external
interrupts are irq_entry, and TRAP and NMI are
trap_entry interrupt handlers. Therefore, you can
see that irq_entry and trap_entry are __interrupt.
In irq_entry, the CSR MCAUSE, MEPC, MSUBM,
etc., are saved, and the handler is called. After

that, the saved register is restored, and the
interrupt returns. This sample appears to be
set up for handling multiple interrupts; however,
it does not fully implement this capability,
preventing the system from effectively managing
concurrent interrupts.

After that, it is necessary to configure the CLIC,
and in the GD32V103, the ECLIC setting. It’s
hard to explain everything here, so I’ll explain the
point. For details, please read the manual. ECLIC
provides the following registers: Does clicintattr
receive interrupts as vectors for each interrupt?

The interrupt type can be set to level, edge, etc.
For each individual interrupt, a clicintie and a
clicintip are brought in as permission and hold
flags. For this reason, we do not use CSR MIE,
MIP, etc.

Offset Permission Register Bit Explanation
0x0000 RW cliccfg 8 Level/priority bit width specification
0x0004 R clicinfo 32 CLIC implementation information
0x000b RW mth 8 Defining interrupt thresholds
0x1000+4*i RW clicintip[i] 8 i-th interrupt pending flag
0x1001+4*i RW clicintie[i] 8 i-th interrupt enable flag
0x1002+4*i RW clicintattr[i] 8 i-th interrupt type specification/vector setting
0x1003+4*i RW clicintctl[i] 8 Setting the i-th level/priority

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 93

The configuration of this CLIC in the sample is
as follows: By continuing to read with reference
to the sample, your understanding will deepen.

Hence, the expectation is for EWRISCV to be
utilized.

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 94

3.1.5 Let’s check the CSR

In RISC-V, Control and Status Registers (CSRs)
are important for checking the operating status
and controlling interrupts. Here, we will check
how to access CSRs and check some CSR
registers in GD32VF103CBT6.

RISC-V does not have any arithmetic flags

Before we get into CSR, let’s talk about arithmetic
flags. Cortex-M, which is often used in embedded
systems, has the following five operation flags,
but RISC-V does not have these operation flags.
Therefore, please understand that there is no
arithmetic flag.

•	 N flag: A negative flag that is equal to 1 if the
result of the operation is negative.

•	 Z-flag: A zero flag, which is 1 if the result of
the operation is zero.

•	 C-flag: Carry/Borrow flag, which is 1 if the
result of the operation is a carry or a carry.

•	 V flag: An overflow flag that is equal to 1 in the
event of an overflow.

•	 Q flag: The saturation flag, which is 1 if
saturation occurs in the saturation operation.

Machine-Level CSR

In reference [5], the Machine-Level CSR is
described in the Machine-Level ISA (Machine
Level Instruction Set) chapter.

Number Name Memo
Machine Information Registers
0xF11 mvendorid Vendor ID
0xF12 marchid Architecture ID
0xF13 mimpid Implementation ID
0xF14 mhartid Hardware thread ID
0xF15 mconfigptr Pointer to configuration data structure
Machine Trap Setup
0x300 mstatus Machine status register
0x301 misa ISA and extensions
0x302 medeleg Machine exception delegation register
0x303 mideleg Machine interrupt delegation register
0x304 mie Machine interrupt-enable register
0x305 mtvec Machine trap-handler base address
0x306 mcounteren Machine counter enable
0x310 mstatush Additional machine status register(RV32 only)
Machine Trap Handling
0x340 mscratch Scratch register for machine trap handlers
0x341 mepc Machine exception program counter
0x342 mcause Machine trap cause
0x343 mtval Machine bad address or instruction
0x344 mip Machine interrupt pending
0x34A mtinst Machine trap instruction (transformed)
0x34B mtval2 Machine bad guest physical address

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 95

The rest of the list is not explained in this book,
but it is defined as a standard.

Number Name Memo
Machine Configuration
0x30A menvcfg Machine environment configuration register
0x31A menvcfgh Additional machine env. conf. register(RV32 only)
0x747 mseccfg Machine security configuration register
0x757 mseccfgh Additional machine security conf. register(RV32 only)
Machine Memory Protection
0x3A0 pmpcfg0 Physical memory protection configuration
0x3A1 pmpcfg1 Physical memory protection configuration(RV32 only)
0x3A2 pmpcfg2 Physical memory protection configuration
0x3A3 pmpcfg3 Physical memory protection configuration(RV32 only)
...
0x3AE pmpcfg14 Physical memory protection configuration
0x3AF pmpcfg15 Physical memory protection configuration(RV32 only)
0x3B0 pmpaddr0 Physical memory protection address register
0x3B1 pmpaddr1 Physical memory protection address register
...
0x3EF pmpaddr63 Physical memory protection address register
Machine Counter/Timers
0xB00 mcycle Machine cycle counter
0xB02 minstret Machine instructions-retired counter
0xB03 mhpmcounter3 Machine performance-monitoring counter
0xB04 mhpmcounter4 Machine performance-monitoring counter
...
0xB1F mhpmcounter31 Machine performance-monitoring counter
0xB80 mcycleh Upper 32 bits of mcycle(RV32 only)
0xB82 minstreth Upper 32 bits of minstret(RV32 only)
0xB83 mhpmcounter3h Upper 32 bits of mhpmcounter3(RV32 only)
0xB84 mhpmcounter4h Upper 32 bits of mhpmcounter4(RV32 only)
...
0xB9F mhpmcounter31h Upper 32 bits of mhpmcounter31(RV32 only)
Machine Counter Setup
0x320 mcountinhibit Machine counter-inhibit register
0x323 mhpmevent3 Machine performance-monitoring event selector
0x324 mhpmevent4 Machine performance-monitoring event selector
...
0x33F mhpmevent31 Machine performance-monitoring event selector

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 96

Debug/Trace Registers
(shared with Debug Mode)
0x7A0 tselect Debug/Trace trigger register select
0x7A1 tdata1 First, Debug/Trace trigger data register
0x7A2 tdata2 Second Debug/Trace trigger data register
0x7A3 tdata3 Third, Debug/Trace trigger data register
0x7A8 mcontext Machine-mode context register
Debug Mode Registers
0x7B0 dcsr Debug control and status register
0x7B1 dpc Debug PC
0x7B2 dscratch0 Debug scratch register 0
0x7B3 dscratch1 Debug scratch register 1

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 97

Programmatic access to CSRs

Specific instructions also exist for accessing the
CSRs. They are defined as Zicsr in reference [4].
The basic instruction is the CSRRW. The contents
of the specified CSR are output to register rd, and
the contents of the CSR specified in register rs1
are rewritten.
•	 CSRRW rd, csr, rs1; Read/Write
•	 CSRRS rd, csr, rs1; Read and Set bit
•	 CSRRC rd, csr, rs1; Read and Clear bit
•	 CSRRWI rd, csr, imm; Read/Write Immediate

Value
•	 CSRRSI rd, csr, imm; Read and Set bit

Immediate Value
•	 CSRRCI rd, csr, imm; Read and Clear bit

Immediate Value

However, many people are not comfortable
programming in assembler, so EWRISCV
provides the following intrinsic functions to
access CSR. Each function specifies a CSR and
performs the operation. All functions return the
value before the CSR operation in the return
value.

•	 __clear_bits_csr (csr, value): Clears the
specified CSR with value.

•	 __set_bits_csr (csr, value): Set the specified
CSR with value.

•	 __read_csr (CSR): Reads the specified CSR
•	 __write_csr (csr, value): Reads the specified

CSR and rewrites the value.

Now, let’s create and execute a program that
accesses CSR. I’m using the intrinsics function
to read the CSR and then using printf to write it
to standard output. For the part where the CSR
is specified, the #define from csr.h was used.
CSRs that are not defined there can always be
specified directly by their CSR number. This is
the part that got a runtime error when executing
the application. The reason might be that the
specification has been revised, or it may be
up to the device vendor whether the CSR is
implemented or not, so this may occur. In the
code example below, the problematic parts have
been commented out.

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 98

The result of running the above code is shown
below.

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 99

Since the opportunity presents itself, the situation
when the error appears will be checked. Check
for errors when accessing mtval2 of the CSR.
An error occurred, and an exception occurred,
and the transition to trap_entry was made. Still,
unfortunately, since an interrupt vector was only
proposed for the normal system, it resulted in an
infinite loop at the trap_entry. Where did it occur
at that time in EWRISCV? It can be displayed
by the Call Stack when debugging. The left side

of the figure below is the state when the break/
halt is applied. The call stack shows how we got
there. While the main function is executing, the
print_csr_status is called, and the trap_entry is
occurring there. In the call stack, you can click on
a displayed function to indicate where it occurred
(approximate location). When you run the print_
csr_status this time, it will look like the one on the
right.

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 100

MEPC and MCAUSE

From there, you can find out more about the CSR
value. In EWRISCV, you can check the CSR value
on the register screen.

MEPC stands for Machine exception program
counter, so it records the PC at the time of
interruption. It can be confirmed that it occurred
when CSRR a0, 0x34B was issued. Check

MCAUSE (Machine trap cause) to see what the
cause is. The GD32V103 has been extended
from the standard specification to include the
following bit settings:

Field bit Memo
INTERRUPT 31 0: Exception or NMI, 1: Interrupt
MINHV 30 Indicate processer is reading

interrupt vector table
MPP 29~28 privilege mode before interrupt
MPIE 27 interrupt enable before interrupt
MPIL 23~16 Previous interrupt level
EXCCODE 11~0 Exception/Interrupt Encoding

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 101

Since the value of mcause is 0x30000002,
INTERRUPT=0 causes EXCEPTION or TRAP,
MPP=3 (machine mode before interrupt), and
EXCCODE causes the exception to 2. Upon
investigating the nature of exception 2, which

was not listed in the microcontroller specification,
the RISC-V specification (reference [5]) was
consulted, revealing the following: Illegal
instructions are being issued for accessing CSR
that should not be accessed. mstatus

INTEERUPT Code memo
0 0 Instruction address misaligned
0 1 Instruction access fault
0 2 Illegal instruction
0 3 Breakpoint
0 4 Load address misaligned
0 5 Load access fault
0 6 Store/AMO address misaligned
0 7 Store/AMO access fault
0 8 Environment call from U-mode
0 9 Environment call from S-mode
0 10 Reserved
0 11 Environment call from M-mode
0 12 Instruction page fault
0 13 Load page fault
0 14 Reserved
0 15 Store/AMO page fault
0 16~23 Reserved
0 24~31 Designated for custom use
0 32~47 Reserved
0 48~63 Designated for custom use
0 ≥64 Reserved

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 102

•	 mstatus
indicates the state of execution in machine
mode. The GD32V is as follows. Set the
permission of the CPU itself to interrupt in MIE
(1: allowed, 0: forbidden), and MPIE indicates the

In fact, before and after interruption, it looks
like this: When running in machine mode, it is
possible to accept interrupts when MIE is 1. When
an interrupt is entered, the MPP is entered in
machine mode (11), and the MPIE is entered with
the value of the MIE before the interrupt (1). In
RISC-V, when an interrupt is entered, the MIE is

0 because the next interrupt cannot be received.
Note: In the case of Cortex-M, it is possible to
receive the next interrupt immediately after the
interrupt. If you have been using Cortex-M, please
pay attention to this point. When the interrupt
returns, it returns to the left side.

Here, let’s take a look at CSRs that are
independent of execution.

•	 mvendorid
mvendorid is the JEDEC manufacturer ID.
Upon examining the read value, it was found
to be 0x0000031E. After some research
was conducted, reference [8] was found to
indicate that this value is the code for Andes

Technology Corporation. This point was not
initially understood. Upon further research
into GD32V103, a page containing references
[9] was discovered. On the Nuclei website,
GigaDevice’s GD32V is presented as an example
of a customer. Furthermore, the N22 RISC-V
processor from Andes is introduced. Thus, it
appears that the processors from GigaDevice,
Nuclei, and Andes in China are related.

state of MIE before the interrupt is entered. The
MPP indicates the privileged status before the
interrupt is given in 2 bits. Displays 00 for user
mode and 11 for machine mode.

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 103

•	 marchid
marchid indicates the ID of the microarchitecture
to be executed. If the most significant bit (MSB)
of marchid is zero, the vendor sets the ID for
an open-source project, and if it is 1, it is a
commercial project. The ID of the open-source
project is given in reference [10].

In the results of the GD32V103 run, Marchid
was 0x80000022. The MSB is 1, and the
Architecture ID is 0x22. In the case of the Andes
A45 core mentioned earlier, it is 0x8a45, so it is
conceivable that this pertains to the Andes N22
core.

Field bit memo
MSB 31 0 : OSS, 1 : Business Project
Architecture ID 30~0 Architecture ID

•	 mimpid and mhartid
mimpid seems to return the ID at the time of
implementation. The results of the GD32V103
execution were 0x00000100. Andes’ A45 naming
method is Major=1, Minor=0, Extension=0.
mhartid indicates the ID of the hardware thread
on which the code is executed. Some recent
microcontrollers are capable of multi-threaded
execution that executes multiple codes at the
same time in hardware. Still, in such a case,
it is possible to check which hardware thread

is currently running. It is 0x0 in the result of
executing the GD32V103. This is by design, and
it is stated that a hardware thread must return
zero. If there is only one thread of execution, that
thread will return a 0x0 as in this case.

•	 misa
misa provides information about the instruction
set. Basically, it is specified by bit length and
instruction set (Extensions), as shown in the
figure below.

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 104

The extensions part is defined as follows.

Bit Name Description
0 A Atomic extension
1 B Tentatively reserved for Bit-Manipulation extension
2 C Compressed extension
3 D Double-precision floating-point extension
4 E RV32E base ISA
5 F Single-precision floating-point extension
6 G Reserved
7 H Hypervisor extension
8 I RV32I/64I/128I base ISA
9 J Tentatively reserved for Dynamically Translated Languages extension
10 K Reserved
11 L Reserved
12 M Integer Multiply/Divide extension
13 N Tentatively reserved for User-Level Interrupts extension
14 O Reserved
15 P Tentatively reserved for Packed-SIMD extension
16 Q Quad-precision floating-point extension
17 R Reserved
18 S Supervisor mode implemented
19 T Reserved
20 U User mode implemented
21 V Tentatively reserved for Vector extension
22 W Reserved
23 X Non-standard extensions present
24 Y Reserved
25 Z Reserved

In the case of GD32V103, it was 0x40901105,
so it will be an extended instruction described
below. As for how to write RISC-V, it is in the form
of corresponding to RV32IMAC. It is written in

the manual which extended instructions are
supported, but it may be useful to know that
these contents are included in the CSR.

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 105

3.2 Using the Renesas FBP-R9A02G021
board

Here, we will use Renesas’ FBP-R9A02G021
board, which has Renesas’ first general-purpose
32-bit RISC-V MCU mounted on it.

The FBP-R9A02G021 has an on-board debugger
and a connector for connecting an external
debugger probe. When using EWRISCV, the
external debugger connection with I-jet is more

functional, so let’s use the external debugger
first. At the end of this section, we will also
explain the on-board connection.

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 106

3.2.1 Generating and debugging an example project

To generate an example and BSP code for
the Renesas FBP-R9A02G021 board, it is
recommended to use the Renesas Smart

Select the FPB- R9A02G021 board and the
IAR Renesas RISC-V Toolchain. After this, it is

possible to configure system details, such as
clocks, components, and pin settings:

Configurator tool. To create a new project for
EWRISCV and FBP-R9A02G021, start the Smart
Configurator tool and do File > New. The following
dialog will appear:

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 107

The standard settings are often OK to start
with, so it is fine just to click the Generate Code
button. The tool will generate code and produce a
clickable link to the resulting files in the Console
tab in the Smart Configurator Output window.

In the example above, the generated EWRISCV
workspace file will be called FPB-R9A02G021.
eww. Open the workspace file in EWRISCV, and
the following will be shown:

As we can see, the UIDS0: User ID Setting
Register value that is set to 0xFFFFFFFF in
the Smart Configurator can be found in the
generated code, in r_bsp_config.h, as macro
definition BSP_CFG_USER_ID_SETTING_0.

After this, it is possible to do Project > Make. The
project is normally pre-configured to use the
I-jet debug probe. If not, go to Project > Options
> Debugger and set the Driver to I-jet. Now, to
download the generated application to the board,
do Project > Download and Debug, and a debug
session will start. This is how it looks:

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 108

In the debug session, we can study various CSRs
in the Registers window, such as the Data flash
memory area access control register DFLEN in
the FLCN register group. Here, we can see that
access to the data flash memory area is disabled
since the value is 0.
It is also possible to see that the connected core
is an RV32ACIMU core in the Debug Log window.
That means that the core implements the Atomic,
Compressed, Integer, Multiplication, and User
Mode extensions.

To study a simple code change in the debugger,
we can add #include “platform.h” in our main.c
file, and set the CSR bit DFLEN to 1 by adding
R_FLCN->DFLCTL_b.DFLEN = 1 to the main
function. The register definition can be found
in the generated R9A02G021-specific BSP file
iodefine.h in the:

folder.

There is also an on-board J-Link debug probe on
the FPB- R9A02G021 board. To use it, connect it
to the USB-C port like this:

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 109

Then, start SEGGER’s JLinkGDBServer.exe
application and let it connect to the RISC-V core:

Now, the JLinkGDBServer.exe application
waits for a TCP/IP connection on port 2331. In
EWRISCV, go to Project > Options > Debugger

and select the GDB Server driver. Configure the
GDB Server driver as follows (localhost,2331):

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 110

After this, we can start the debug session, and
the same register values can be studied:

Note that currently, the GDB Server performance
and functionality are somewhat limited in
EWRISCV. For example, it is not possible to study
certain CSRs while using the EWRISCV GDB
Server implementation. This will be improved in
later releases. With an I-jet debug probe, no such
limitations exist.

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 111

4. Navigating RTOS, automated
workflows, and code quality

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 112

4. Navigating RTOS, automated workflows,
and code quality

When diving into the RISC-V architecture and
its ecosystem, understanding and utilizing the
right tools is crucial for effective learning and
development. Among these, Real-Time Operating
Systems (RTOS) play a vital role, especially as
software projects grow in complexity. RTOSs
like Azure RTOS (ThreadX) and FreeRTOS,
available as sample implementations with the IAR
Embedded Workbench for RISC-V (EWRISCV),
offer structured resource, task, and timing
management essential for real-time applications.
Additionally, SAFERTOS provides a pre-certified,
deterministic RTOS solution for applications
requiring the utmost safety and reliability.

This book will not delve into the specifics or step-
by-step details of the RTOSes. We encourage
developers to experiment with the provided
out-of-the-box examples and seek additional
resources on the RTOS vendors’ websites or
directly on GitHub.

Additionally, to address common development
challenges associated with modern workflows,
automation, and Continuous Integration/
Continuous Deployment (CI/CD) pipelines, IAR
enhances the ecosystem by offering the IAR
Build Tools for RISC-V, featuring:

Efficient Software Building and Testing: The
comprehensive tool suite, including the IAR C/
C++ Compiler, Assembler, Linker, and IARBuild,
facilitates efficient building and testing of critical
software on a large scale, ensuring reliability and
performance in deployment.

Adaptability and Performance Across
Environments: Designed to adapt to various
organizational needs, these tools can be
deployed on small build servers with a few
licenses or scaled to support hundreds of parallel
builds, ensuring high performance regardless of
the scale.

Integration with Modern Development Workflows:
Built with modern software development
practices in mind, the IAR Build Tools seamlessly
integrate into CI/CD pipelines, supporting
Virtual Machines, Containers (Docker), and Self-
hosted Runners. This compatibility ensures that
developers can maintain efficient, continuous
integration and deployment processes, which is
crucial for modern software development.

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 113

By leveraging the RTOS options and the IAR
Build Tools for RISC-V, developers can navigate
the complexities of RISC-V development with
a comprehensive set of resources designed to
address key challenges and enhance the quality
and efficiency of software projects.

Finally, in addition to RTOS and automated
workflows, ensuring code quality and facilitating
code reuse are pivotal for the sustainability and
efficiency of software projects. IAR addresses

these aspects with its powerful static analysis
tool, C-STAT, fully integrated into the IAR
Embedded Workbench. C-STAT performs
an exhaustive analysis on the source code
level, identifying potential issues early in the
development process. This proactive approach
to code quality helps developers adhere to
industry-standard coding practices, including
MISRA, CWE, and CERT C/C++ Secure Coding
Standards.

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 114

5. Conclusion

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Get the most out of this eBook – download the IAR Embedded Workbench for RISC-V here 115

References

1.	 Computer Architecture: A Quantitative
Approach to Design, Implementation,
and Evaluation, David A.Patterson, John
L.Hennessy

2.	 IAR C/C++ Development Guide, Linking
using ILINK https://wwwfiles.iar.com/riscv/
EWRISCV_DevelopmentGuide.ENU.pdf

3.	 Top Ten Fallacies About RISC-V, David
Patterson https://riscv.org/blog/2023/03/top-
ten-fallacies-about-risc-v/

4.	 The RISC-V Instruction Set Manual Volume I:
Unprivileged ISA

5.	 The RISC-V Instruction Set Manual Volume
II: Privileged Architecture Document Version
20211203

6.	 https://hsandid.github.io/posts/risc-v-
custom-instruction/

7.	 https://github.com/riscv/riscv-fast-interrupt/
blob/master/clic.adoc

8.	 AndesCore AX45MP-1C Processor Reference
Manual, https://www.andestech.com/wp-
content/uploads/AX45MP-1C-Rev.-5.0.0-
Datasheet.pdf

9.	 Nucleisys Customer Cases, https://www.
nucleisys.com/product/rvipes/lcxp/

10.	 Open-Source RISC-V Architecture IDs,
https://github.com/riscv/riscv-isa-manual/
blob/latex/marchid.md

5. Conclusion

In conclusion, this book serves as a
comprehensive guide for developers and
professionals navigating the intricacies of
embedded software development within the
RISC-V ecosystem. By elucidating the features
and capabilities of RISC-V and the extensive
toolset provided by the IAR Embedded
Workbench for RISC-V (EWRISCV), it lays a solid
foundation for understanding CPU instruction
sets, stack behaviors, and the pivotal role of Real-
Time Operating Systems (RTOS) in managing
complex software projects.

The book emphasizes the importance of
selecting the right tools, such as the IAR Build
Tools for RISC-V and the C-STAT static analysis
tool, to enhance development workflows,
ensure code quality, and facilitate code reuse.

These solutions offer a range of functionalities
from efficient software building and testing to
adherence to industry-standard coding practices,
thereby mitigating security risks and coding
errors.

With practical insights into the use of RISC-V
on hardware along with a focus on modern
development practices including CI/CD
pipelines, this guide encourages experimentation
and further exploration beyond its pages. It
underscores the value of certified compilers
like those offered by IAR, which streamline the
development process, especially in systems
requiring functional safety.

By leveraging the resources and examples
provided, along with the IAR Embedded
Workbench’s powerful capabilities, developers
are well-equipped to tackle the challenges of
RISC-V development, ensuring their projects
are not only efficient and reliable but also
maintainable and secure for future endeavors.

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/
https://wwwfiles.iar.com/riscv/EWRISCV_DevelopmentGuide.ENU.pdf
https://wwwfiles.iar.com/riscv/EWRISCV_DevelopmentGuide.ENU.pdf
https://riscv.org/blog/2023/03/top-ten-fallacies-about-risc-v/
https://riscv.org/blog/2023/03/top-ten-fallacies-about-risc-v/
https://hsandid.github.io/posts/risc-v-custom-instruction/
https://hsandid.github.io/posts/risc-v-custom-instruction/
https://github.com/riscv/riscv-fast-interrupt/blob/master/clic.adoc
https://github.com/riscv/riscv-fast-interrupt/blob/master/clic.adoc
https://www.andestech.com/wp-content/uploads/AX45MP-1C-Rev.-5.0.0-Datasheet.pdf
https://www.andestech.com/wp-content/uploads/AX45MP-1C-Rev.-5.0.0-Datasheet.pdf
https://www.andestech.com/wp-content/uploads/AX45MP-1C-Rev.-5.0.0-Datasheet.pdf
https://www.nucleisys.com/product/rvipes/lcxp/
https://www.nucleisys.com/product/rvipes/lcxp/
https://github.com/riscv/riscv-isa-manual/blob/latex/marchid.md
https://github.com/riscv/riscv-isa-manual/blob/latex/marchid.md

	About this eBook
	Foreword
	About the Author:

	1. Introduction
	1.1 Why RISC-V?
	1.2 Open-Source ISA and RISC-V
	1.3 What is RISC
	1.4 RISC-V instruction set overview
	1.4.1 RISC-V instruction set basics
	1.4.2 Instruction extensions and custom instruction
	1.4.3 General-Purpose registers & Floating-Point registers
	1.4.4 CSR(Control and Status Register)
	1.4.5 Modes of operation
	1.4.6 Simple assembler instructions

	1.5 Profiles
	1.5.1 RISC-V profiles
	1.5.2 RISC-V platform specification

	1.6 Why should we use RISC-V?
	1.7 Organization of this document

	2. Basic operation of the EWRISCV
development environment
	2.1 Precautions when using EWRISCV
	2.2 Create a project (sample 1)
	2.2.1 Creating and running a new project
	2.2.2 Project structure
	2.2.3 About the manual

	2.3 Options
	2.3.1 General Options

	2.3.2 C/C++ Compiler
	2.3.5 Debugger
	2.3.4 Linker
	2.3.3 Output converter
	2.4 Understanding the RISC-V project as a whole
	2.4.1 Creating sample 2
	2.4.2 Running sample 2
	2.4.3 About GP relative

	2.5 C extension instructions
	2.6 M Extension instructions
	2.6.1 Creating sample 3
	2.6.2 Enabling M extension instructions
	2.6.3 RV32M

	2.7 A extension instructions
	2.7.1 Creating sample 4 with A extension instructions

	2.8 N extension instructions
	2.9 Custom instructions
	2.9.1 Opening the IAR information center examples
	2.9.2 RISC-V operation codes
	2.9.3 Custom instruction
	2.9.4 Using custom instructions in code
	2.9.5 Using custom instructions in the simulator

	2.10 About function calls/ABIs
	2.10.1 C language functions
	2.10.2 Rules for calling functions

	2.11 About the output of EWRISC-V
	2.11.1 Executables/libraries
	2.11.2 Object files
	2.11.3 List files
	2.11.4 Browse files
	2.11.5 MAP files

	3. Learn RISC-V on real hardware
	3.1 Using the GigaDevice GD32VF103
	3.1.1 Debug probe connection
	3.1.2 Checking the connection with IAR I-jet
	3.1.3 LED blinking: creating sample 5 using GPIO
	3.1.4 Set up the debugger and start running
	3.1.4 Learning about interrupts
	3.1.5 Let’s check the CSR

	3.2 Using the Renesas FBP-R9A02G021 board
	3.2.1 Generating and debugging an example project

	4. Navigating RTOS, automated workflows,
and code quality
	Conclusion
	References

