The ultimate hands-on eBook:

Gettlng strted Wlth |
RISC-V bvIAR ~

B . 4
From c

e - ’
— 4 .

€ ’

N,

—-— |
=

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Contents

About this eBook 4
Foreword 5
About the Author 5
1. Introduction 7
11 Why RISC-V? 7
1.2 Open-Source ISA and RISC-V 8
1.3 What is RISC? 8
1.4 RISC-V instruction set overview 9
141 RISC-V instruction set basics 9
1.4.2 Instruction extensions and custom instruction 1
1.4.3 General-Purpose registers & Floating-Point registers 1
1.4.4 CSR(Control and Status Register) 12
1.4.5 Modes of operation 12
1.4.6 Simple assembler instructions 13
1.5 Profiles 13
1.5.1 RISC-V profiles 14
1.5.2 RISC-V platform specification 15
1.6 Why should we use RISC-V? 15
1.7 Organization of this document 16
2. Basic operation of the EWRISCV development environment 18
2.1 Precautions when using EWRISCV 18
2.2 Create a project (sample 1) 18
2.2.1 Creating and running a new project 18
2.2.2 Project structure 24
2.2.3 About the manual 24
2.3 Options 26
2.3.1 General Options 26
2.3.2 C/C++ Compiler 32
2.3.3 Output converter 37
2.3.4 Linker 38

Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

2.3.5 Debugger 41
2.4 Understanding the RISC-V project as a whole 42
2.4 Creating sample 2 42
2.4.2 Running sample 2 43
2.4.3 About GP relative 45
2.5 C extension instructions 48
2.6 M Extension instructions 50
2.6.1 Creating sample 3 50
2.6.2 Enabling M extension instructions 51
2.6.3 RV32M 53
2.7 A extension instructions 54
2.71 Creating sample 4 with A extension instructions 55
2.8 N extension instructions 57
2.9 Custom instructions 58
2.9.1 Opening the IAR information center examples 58
2.9.2 RISC-V operation codes 59
2.9.3 Custom instruction 59
2.9.4 Using custom instructions in code 60
2.9.5 Using custom instructions in the simulator 61
210 About function calls/ABIs 62
2.10.1 C language functions 62
2.10.2 Rules for calling functions 63
2.11 About the output of EWRISC-V 64
2.11.1 Executables/libraries 64
2.11.2 Object files 64
2.11.3 List files 64
2.11.4 Browse files 64
2.11.5 MAP files 65
3. Learn RISC-V on real hardware 77
3.1 Using the GigaDevice GD32VF103 77
3.1.1 Debug probe connection 77
3.1.2 Checking the connection with IAR I-jet 79
3.1.3 LED blinking: creating sample 5 using GPIO 81
3.1.4 Set up the debugger and start running 86
3.1.4 Learning about interrupts 88
3.1.5 Let’s check the CSR 94
3.2 Using the Renesas FBP-R9A02G021 board 105
3.2.1 Generating and debugging an example project 106
4. Navigating RTOS, automated workflows, and code quality 112
I 5. Conclusion 15
References 115

Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here 3

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

About this eBook

Infineon, Qualcomm, Nordic Semiconductor,
Bosch, and NXP have already declared

their joint intent to explore the RISC-V
architecture.

Now, with Renesas announcing the availability
of a general-purpose RISC-V MCU, the heat

is on, and embedded developers worldwide
must quickly skill up.

This is “The ultimate hands-on guide: Getting
Started with RISC-V by IAR.”

For numerous years, developers have highly
appreciated RISC-V, particularly its open
architecture, customization, scalability,

and community support. Companies like

SiFive, Andes, and GigaDevice already

operate a respectable and sizeable business
manufacturing and selling RISC-V cores and
devices, but still the commercial lift-off has been
somewhat missing - until now.

The ecosystem surrounding RISC-V is swiftly
maturing, which is also the obvious case

when looking at recently announced industry
partnerships. As more devices are put to market,
performance and efficiency are expected to
improve as competition sharpens. Lastly, large
vendors like Renesas would not enter the RISC-V
arena unless they confidently predict demand.
Consequently, and it's been a long way coming,
now the cornerstones for RISC-V lift-off appear to
be in the right position.

At IAR, we have spent the past 40 years building

solutions and toolchains for a very large number
of architectures and devices, serving embedded
developers and organizations around the world.
This guide is structured around use cases with
IAR Embedded Workbench for RISC-V, including
references to our Static Analysis tool, IAR
C-STAT for RISC-V. As you go through the guide,
we strongly recommend that you download a free
evaluation copy of the software.

IAR’s solutions for RISC-V are Functional Safety-
certified and compliant with standards such as
ISO 26262 for automotive applications and IEC
61508 for industrial automation. The solution can
be operated by a developer, in a Cl pipeline with
automated workflows or a combination of both.
You decide how you run it: local, virtual, or cloud,
we call it Open Choice.

We hope that you enjoy this exhaustive free
guide; feel free to share it with peers, and don’t
hesitate to reach out should you have any
additional questions. If you want to dive into more
of our RISC-V tips and tricks and best practices,
go to our RISC-V thought leadership section
located here.

| sincerely hope you are ready to immerse
yourself in RISC-V and wish you a fun coding and
skill-up experience!

Niklas Kallman,
Senior Product Manager,
RISC-V solutions, IAR Systems

Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here 4

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/
https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/
https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/
http://info.iar.com/risc-v

Foreword

This book is intended for developers and
professionals developing embedded software
using RISC-V. We will explain RISC-V features
and its capabilities when using IAR Embedded
Workbench for RISC-V (from now on referred to
as EWRISCV). Thus, to understand, we will also
look at the behavior of the CPU’s instruction

set and stack. The reader is expected to have a
basic knowledge of CPUs and understand the
basic functionality of assembler instructions. This
book employs the C programming language and
assembly language. It provides an introduction
to C programming that is necessary for the

About the Author:

Hiroki Akaboshi is a senior field application
engineer employed by IAR in Tokyo, Japan. He
has achieved numerous academic degrees,
including a B.E. (1991), M.E. (1993), and D.E. (1996)
in computer science from Kyushu University.

Hirokis research interests primarily concern CPU
architectures and compilers, but his passion lies
in embedded software development. For more
than 20 years, he has channeled that passion into
a wide range of projects focused on safety and
functionality in the automotive industry.

context of this book. As for assembly language, it
focuses on the essentials needed for the RISC-V
architecture. For more in-depth knowledge of
assembly language, readers are encouraged to
consult additional resources.

The evaluation version of IAR Embedded
Workbench for RISC-V is available free of charge
at https://www.iar.com/products/architectures/
risc-v/iar-embedded-workbench-for-risc-v/.
With this book, we encourage the reader to learn
about the RISC-V architecture while using IAR’s
RISC-V solution.

Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here 5

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/
https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/
https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

R
- RN
W

LA

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

1. Introduction

1.1 Why RISC-V?

RISC-V is an open-source instruction set
architecture. Processors and microcontrollers
using the RISC-V instruction set are also often
referred to as RISC-V. RISC-V was first developed
by Krste Asanovic in 2010 at the University of
California, Berkeley. RISC-V is the fifth RISC
instruction set (Instruction Set Architecture: ISA)
coming from the University of California, Berkeley.
RISC is an acronym for Reduced Instruction Set
Computer, which refers to a simple instruction
set.

RISC-V has not come out of the blue but has
been made with decades of research and
practical application in mind. For example,
in 1990, David Patterson and John Hennessy
published the book “Computer Architecture:
A Quantitative Approach”[1] which introduced
the DLX architecture, the ancestor of RISC-V.
The DLX in this book was used to a certain
extent in education. These two professors have
popularized RISC in a general sense. John
Hennessy had launched MIPS at that time, so
there was not much movement from a business
perspective with DLX. In this way, the technical
content that led to RISC-V already existed 30
years ago. Another significant point is that
RISC-V is a project on which David Patterson
is involved and continues to distribute RISC-V
information (Ref. 7). Since this project is based
on the experience and collaboration of such
experts, RISC-V solves many problems in legacy
instruction sets. For example, the following points
have been improved in RISC-V.
¢ Incontrast to CPUs that have been forced to
expand the address space, 32-bit, 64-bit, and
128-bit CPUs have been considered from the
beginning.
e The instruction set is modular, allowing
you to choose to implement only what you
need, allowing you to use limited hardware
efficiently.
¢ Elimination of delayed branching, lazy
loading, and other mechanisms that assume
a pipeline for single instruction execution.

RISC-V International was established in 2015

to promote RISC-V and moved to Switzerland

in 2019. RISC-V International publishes the ISA
specifications for RISC-V, which are developed by
RISC-V International members.

The reason why RISC-V is widely discussed is
that the ISA (instruction set) is open source.
The specification is distributed under Creative
Commons Attribution 4.0 International and is
licensed under a license that may be distributed
or modified. Please note that because the ISA
is open, it does not mean that hardware or IP
(Intellectual Property) is free. Since the ISA
specification is open, there is no problem no
matter who makes a microcontroller with the
ISA. Therefore, various companies, institutions,
universities, etc., have implemented RISC-V
CPUs.

In some cases, design data is released as open
source, mainly by universities, but not all designs
are open to the public, and not all designs are
free. Several companies sell RISC-V IP cores.
Examples include Andes Technology, SiFive, Inc.,
and Codasip. If the instruction set is fixed, you
might think that the implementation will be the
same, but this is not the case; for example, the
number of stages of the pipeline, the number of
instructions issued at the same time, the cache,
memory access, branch prediction, etc., are each
determined by each company.

Furthermore, many people relate GCC (the GNU
C Compiler) to open source. Also for RISC-V,
GCC is supported and is required for building the
Linux kernel and applications. Many people think
that GCC is required when developing software
with RISC-V, but compilers are also required on

a case-by-case basis in developing embedded
systems. For example, in systems requiring
functional safety, the user must validate and
certify the compiler tools, and this is quite tricky.
IAR provides compilers certified by a third party,
significantly reducing users’ time and effort. IAR’s
compiler is specialized for embedded systems,
which also benefits in terms of code size and
execution speed.

Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here 7

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

1.2 Open-Source ISA and RISC-V

One of the features of RISC-V is the open-source
licensed instruction set (ISA), but what are the
benefits? Many MCUs (Micro Controller Units)
and MPUs (Micro Processor Units) sold as chips
worldwide are owned by a specific company.

For example, Renesas’ RX family is defined by
Renesas, which implements its vendor-specific
ISAs and sells them as chips. In addition,

Arm sells Arm’s Cortex-M/Cortex-R/Cortex-A
CPU cores as IP (Intellectual Property) to
semiconductor manufacturers, who use the IP
to make and sell chips. Such MCUs and MPUs
have vendor-specific ISAs. Vendor-specific ISAs
cannot be added or modified by the user using
them.

In the case of Arm, there was a contract to use
the Arm IP as it is, and an architecture license
that allowed you to develop it yourself. In addition,
starting in 2020, the Cortex-X Custom Program
has been added, and it is possible to make a
contract that can be customized. In contrast

to these vendor-specific ISAs, RISC-V has the
advantage of being an open-source ISA. For
example, you are free to add special instructions
to implement your application efficiently. In a
vendor-specific ISA, it is generally difficult for
users to add their own instructions. In the case of
Arm, it may be possible to make a contract, but
the user cannot do it alone.

However, there are quite a few projects that

not only have an open instruction set but also

an open IP. So why is RISC-V getting so much
attention? Only creating an open ISA is not

that useful. One reason is that RISC-V has
successfully built a group of friends called an
ecosystem. As of 2023, many companies are
participating in the ecosystem, from hardware to
software. For example, IAR released Embedded
Workbench for RISC-V in 2019, and it has been
upgraded 11 times by March 2023. In addition,

it has also been released in 2021 and 2023 as a
functionally safety-certified toolchain for RISC-V.

If you look at IAR Embedded Workbench for
RISC-V, you can also introduce examples such

as Azure RTOS ThreadX, FreeRTOS example
projects, and SAFERTOS. Considering embedded
systems, having a compiler and RTOS allows you
to start development with peace of mind. IAR is
just one example, but having such an ecosystem
will enable us to provide a more comprehensive
service. On the other hand, if the RISC-V
business is not established in the long term, no
companies will be participating in the ecosystem.
From that point of view, RISC-V, which is an open
ISA, has become a business target.

1.3 What is RISC?

(Reduced Instruction Set Computer)?

RISC is an acronym for Reduced Instruction

Set Computer. What is RISC? Let me briefly
explain the question. In the world of CPUs
(computers), an instruction set is defined, and

a program is created using that instruction set
(side by side). To make the CPU do faster and
more sophisticated things, many engineers
added more and more instruction sets. Software
development is now developed using compilers,
and instructions have been added to execute
high-level language syntax. This has come to be
called the Complex Instruction Set Computer
(CISC) because complex instructions have been
added.

However, as the research progressed properly
(analyzing the execution of the code), it became
clear that complex instructions were rarely used
and that it took more work for the compiler to use
them well. If that is the case, it is easier to design
if only simple instructions are implemented, and
it has been found that the operation as a CPU
can be speedy. What do you do if you don’t have
complicated instructions? For that, it will be
executed by combining simple instructions.

Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here 8

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

By using CPUs that are limited to simple
instructions in this way, the movement to create
faster CPUs has been popular since around 1980,
and it has become widely used as a Reduced
Instruction Set Computer (RISC). Sparc, R2000/
R3000, Alpha, i860/i960, PA-RISC, PowerPC, and
others were introduced to the market. “Computer
Architecture: A Quantitative Approach” was
published in 1990 by David A. Patterson and John
L. Hennessy as a computer science textbook.
One of the authors, Patterson, is also involved in
RISC-V.

As the speed of the CPU progresses, the
difference between the speed of the memory and
the operating speed of the CPU has widened. No
matter how fast the CPU is, there is a problem
with waiting when retrieving data from memory
or writing data to memory. This is called the von
Neumann bottleneck. In CISC, there are usually
instructions for manipulating data in memory.
However, since memory access is slow, the CPU
is also affected by the slow access, and the
operation speed slows down. RISC-type CPUs
are also characterized by adopting a load-store
architecture in which general-purpose registers
are prepared, and operations are performed

on the registers. In the load store architecture
adopted by many RISCs, the CPU instruction has
a Load instruction that reads data from memory
and a Store instruction that writes data to
memory. Memory is accessed by Load and Store
instructions, and processing such as addition and
bit arithmetic is performed on registers.

As the CPU gets faster and faster, a method is
taken to close the speed difference between the
CPU and memory by using high-speed memory
such as cache memory (but only small in size).
On modern CPUs, the cache itself is prepared at
multiple levels.

1.4 RISC-V instruction set overview
14.1 RISC-V instruction set basics

In RISC-V, the instruction set defines basic

and extended instructions and which custom
instructions can be added. Let’s examine them.
There are four basic types of instructions:

There are three types of addresses: 32-bit,
64-bit, and 128-bit. In addition to 32 general-
purpose registers, 16 are also available for small
microcontrollers.

¢ RV32I (32-bit addressing, integer instructions,
32 general-purpose registers)

o RV64l (64-bit addressing, integer
instructions, 32 general-purpose registers)

e RV128I (128-bit addressing, integer
instructions, 32 general-purpose registers)

o RV32E (32bit addressing, integer instructions,
16 general-purpose registers)

There may currently be little need for the 128-bit
RV128I, but it seems that up to 128 bits have been
added to the basic instruction in consideration
of the future. Since the instruction sets of
existing CPUs are based on 32 bits and have
been expanded, they often have an awkward
structure that has been repeatedly extended
and renovated. On the other hand, RISC-V takes
advantage of the fact that it is a latecomer and
creates a beautiful instruction set by considering
32 bits, 64 bits, and 128 bits together. In addition,
there is still room for future expansion.

First, six instruction formats are the basis of
RISC-V instructions. Among them, opcode and
funct specify instructions, rd, rs1, and rs2 specify
registers, and imm represents immediate data.
In the figure below, it is interesting to note that
rd, rs1, and rs2 are placed in the same position.
These points make it easier to design hardware.

Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here 9

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

3 27 26 25 24 20 19 15 14 12 11 v] 0
funect7 rs2 sl funectd rd opeode R-tvpe
hum:ll:{_J] rsl | Tunet3 rd opcode [-type
imm/11:5] rs2 rsl funct3 i | 4:0] opcode S-type
imm|[12]10:5] | rs2 sl funct3 | imm[4:1|11] opcode B-type
imm |31:12| rel opeode U-type
imm|20)| 10: 111 | 19:12] rd opeode J-type
Therefore, allocating 6 to 2 bits of the instruction is the part corresponding to the opcode. The
set is determined as follows. The previous figure lower two bits are inst[1:0]=11.
inst[6:5]V 000 001 010 on 100 101 110 11
inst[4:2]>
00 LOAD LOAD-FP | custom-O | MISC- OP-IMM AUIPC OP- 48b
MEM IMM-32
01 STORE STORE-FP | custom-1 | AMO OP LUI OP-32 64b
10 MADD MSUB NMSUB NMADD OP-FP reserved custom-2/ | 48b
rvi28
1 BRANCH | JALR reserved JAL SYSTEM reserved custom-3/ | >=80b
rvi28
Let’s look at the actual LOAD instruction, which the part that handles byte data (signed and
is as follows on the RV32l. You can see that inst unsigned), half words (signed and unsigned), and
[6:2] is 00000. Even in the Load instruction, word data is distinguished in the INST[14:12] part.
15 14 12 1
Ib (load byte) offset12 [11:0] -mm CLE
15 14 12 1
Ibu (load b igned
Ih (load halfword) 15 14 ZH 7 6 0
oad halfwor
offset12 [11:0] -- 0000011

15 14 21

Ihu (load halfword d)
el ooz | et | 01 | o | oooon

lw (|Oad Word) 15 14 121 7 6 0
offset12 [11:0] -- 0000011

m Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here 10

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

14.2 Instruction extensions and custom instruction

RISC-V can have extended instructions and
custom instructions. This is what makes RISC-V
unique; it is called a modular configuration.
Extension instructions are being proposed to
RISC-V International, and various extension
instructions are being standardized or discussed.
For example, in the 2019 ISA Specifications
(Volume 1, Unprivileged Specification version
20191213[4]), the extended instructions are
described as follows:

Extension | Version Status
M 2.0 Ratified
A 21 Ratified
F 2.2 Ratified
D 2.2 Ratified
Q 2.2 Ratified
C 2.0 Ratified
Counters 2.0 Ratified
L 0.0 Draft

B 0.0 Draft

J 0.0 Draft

T 0.0 Draft

P 0.2 Draft

Vv 0.7 Draft
Zicsr 2.0 Ratified
Zifencei 2.0 Ratified
Zam 01 Draft
Ztso 01 Frozen

The meaning of Status at this time is also

described.

e Ratified approved; no changes allowed

e Frozen will not be changed without approval
and may only be changed if there is a critical
issue.

e Drafts are subject to change until approval.

The status will change over time, so always check

the latest materials.

14.3 General-Purpose registers & Floating-Point
registers

RISC-V uses a general-purpose register system,
but 32 integer registers can be used with the
RV32l, RV64l, and RV128l basic instructions.
However, one of them will always be a zero
register with a zero value. The RV32E is designed

for small microcontrollers and uses only 16
integer registers.

RISC-V has two names for integer registers:

the register name and the ABI name. xO~x31is
the register name, and the ABI name is zero,ra,
sp, gp,tp, t0~t6, a0~a7, sO~s1l. If you are
programming in assembler with EWRISCV or
using an inline assembler in a C program, use the
ABI name.

e zerois aregister that reads are always zero,
and writes are ignored (so always returns
zero) When ra calls a function, set the return
address to ra and call it.
sp is a stack pointer
gp is a global pointer, and gp is a register
used for memory access. To access memory
using this GP, you also need to configure the
linker settings

e tpis athread pointer
tO-t6 are temporary registers
a0-a7 are used for function arguments and
return values

e S0-S11are the conserving registers

Register ABI Name Content

name

x0 zero zero register

x1 ra return register

x2 sp stack pointer

x3 ap global pointer

x4 tp thread pointer

x5,X6,x7 to,1,t2 temporary pointer

x8 sO/fp save register or frame
pointer

x9 sl save register

x10,x11 a0,al function arguments/
return values

x12,x13,x14, a2,a3,a4, function arguments

x15,x16,x17 ab,a6,a7

x18,x19,x20, | s2,s3,s4, save register

x21,x22 sb,s6

x23,x24,x25, | s7,s8,s9, save register

X26,x27 s10,s11

x28,x29, t3,t4,15,16 temporary register

x30,x31

Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here 1

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

The ABI name may differ somewhat from

the group for this register name x0~x31. The
sequence of the save registers is divided. It is
for the RV32E. Since the RV32E can only use 16
registers, it is devised to operate the program
efficiently even when reduced by half.

In RISC-V, it is possible to handle single-precision
floating-point numbers with extended instruction
F and double-precision floating-point with
extended instruction D. In terms of specifications,
there are Zfinx and Zdinx that use quadruple
precision and integer registers with extended
instruction Q, but first, we will proceed with the
basic F and D. The floating-point register has

32 registers. Use the lower 32 bits for single

precision and 64 bits for double precision.
Floating-point registers can be fO~f31 for single
precision and dO~d31 for double precision.

14.4 CSR(Control and Status Register)

RISC-V has a group of registers called CSR
(Control and Status Register). Since it can

be specified as a 12-bit value, various control
registers are defined in Reference [5]. However,
in reality, the implementation differs depending
on the chip. For details, please check the
specifications and the microcontroller to be
used. Here are some of the most important CSR
registers. In Chapter 3, we will check these values
while looking at the values on the GigaDevice
microcontroller.

Reference [5] describes the privileges and
describes the modes of operation. If you look at
the current embedded microcontrollers, you will
see that they have a machine mode and a user

mode. level
Level Value Modes of operation
0 00 user/application (U)
1 01 superviser (S)
3 1 machine (M)
@

OxF1 mvendorid Vendor ID
OxF12 marchid Architecture ID
OxF13 mimpid Implementation ID
OxF14 mbhartid Hardware thread ID
0x300 mstatus Machine status register
0x301 misa ISA and extensions
0x304 mie Machine interrupt-enable register
0x305 mtvec Machine trap-handler base address
0x341 mepc Machine exception program counter
0x342 mcause Machine trap cause
0x343 mtval Machine bad address or instruction
0x344 mip Machine interrupt pending

14.5 Modes of operation

It is expected that the software and drivers

will be running. The machine mode must be
implemented in any implementation, but the
other modes are optional. Three combinations
will be implemented.

of support | Support Usage

levels mode

1 M Simple embedded
system (S)

2 M,U Secure system (S)

3 M,S,U Unix, android, or
Windows

Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here 12

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

When entered, it will transition to machine mode
(there is also a way to transfer, but the explanation
will be omitted here). MRET is the instruction
used when returning from interrupt processing in
machine mode.

14.6 Simple assembler instructions

There are not many people who create programs
in assembler these days. However, it is still used
if you want to implement an RTOS or optimize
performance. There are extension and custom
instructions in the case of RISC-V, so you should
at least remember the assembler when using
RISC-V. Remembering operations, memory
accesses, and function calls/returns would be
best. First, look at two instructions as arithmetic
examples: the addition add instruction and the
additive immediate value addi instruction.

e adda0,al, a2
e addiaO,al,1

The add directive specifies three registers, where
a0 is the resulting storage register, al is the first
argument, and a2 is the second argument. If you
write it mathematically, it will be like a0 = a1 +

a2, which is the same as the order in which it is
written in assembler. This instruction adds the
contents of registers Al and A2 and writes them
to AO.

In the instruction addi, a0 is the result storage
register, al is the first argument, and 1is the
immediate value. Mathematically, a0 = a1l + 1, add
1to register a1 and write to a0. The following are
the lw and sw instructions for memory access.

e Iwao0,-8(gp)
e swa0,-8(gp)

The instruction Iw becomes the meaning of the
load word, which retrieves the word data from
memory and stores it in a register. The address
of the memory is the register plus the offset,
which is the address of -8 to the contents of gp,
and the contents of the address are stored in a0.
The instruction sw becomes the meaning of the
store word and writes the value of the register

to memory. The address of the memory is the
register plus the offset, which is the address of -8

to the contents of gp, and the contents of register
a0 are written to that address. In the case of a
memory access instruction, the first argument

is a register, and the second argument is the
memory address.

The next is the jump instructions.

e jalra, Ox18 (call Ox18 pseudo instruction)

e jalr zero, ra, OxO (ret pseudo instruction)

The instruction jal saves the address of the next
instruction in the register ra and sets (jumps)

the PC to the address obtained by adding the
immediate Ox18 to the current PC. If you write

it as a call pseudo-instruction, it becomes call
0x18, but it has exactly the same meaning. The
instruction jalr stores the next instruction in the
zero register and sets the PC to the address
obtained by adding the offset Ox0 to the register
ra. Writing to the zero register is meaningless in
RISC-V, so it is used when returning from a simple
function. Therefore, the RET pseudo-instruction
has the same meaning.

At first, assembler may seem difficult to grasp,
but once you have the opportunity to use and
see it, you will get used to it. To accelerate
habituation, it is a good idea to learn using
RISC-V standards.

1.5 Profiles

RISC-V has a modular structure that allows
extension instruction selection. However, if you
create a modular structure too freely, you may
end up with many incompatible things. In fact,
Dr. David Patterson has also explained these
concerns. A blog with Dr. David Patterson listed
in the Bibliography [3] is titled “Top Ten Fallacies
About RISC-V™.

The sixth part of the misconception is that

“6. modularity leads to a more fragmented
software ecosystem “ he writes, “ This fallacy has
been raised since we first started advocating

for RISC-V, so it’s not been neglected”.. It is
explained.

Here’s an introduction to the current profile.

Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here 13

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

16.1 RISC-V profiles

RVI20 Profiles, RVA20 Profiles, and RVA22
Profiles are defined in the instruction set (as of
2023). These Profiles are defined in the following
Six ways:

RVI20U32

RVI20U64

RVA20U64

RVA20S64

RVA22U64

RVA22564

The first two letters “RV” refer to RISC-V, and
the three letters indicate the family name of the
profile.

e RVI:INTEGER

¢ RVM: MICROCONTOLLER

¢ RVA: Application

A two-digit number indicates the year of approval
of this profile. The sixth character specify the
operating mode: M-mode (machine mode),
S-mode (supervisor mode), and U-mode (User
mode). The two digits at the end specify 32 bits
and 64 bits. For example, the RVI20U32 profile
consists of three elements: Mandatory Base,
Mandatory Extensions, and Optional Extensions.
¢ Inthe Mandatory Base, the RV32l is specified
as little-endian. In addition, the fence.tso
directive is also mandatory.
¢ None- mandatory extension
e Optional Extensions
> M Integer multiplication and division.
> A Atomic instructions.
> F Single-precision floating-point
instructions.
> D Double-precision floating-point
instructions.
> C Compressed Instructions.
> Zifencei Instruction-fetch fence
instruction.
> Misaligned loads and stores may be
supported.
> Zicntr Basic counters.
> Zihpm Hardware performance counters.

Let’s also take a look at the RVA22U64 Profile.

¢ Inthe Mandatory Base, the RV64l is specified
as little-endian. In addition, the fence.tso
directive is also mandatory.

¢ Mandatory Extensions

> M Integer multiplication and division.

> A Atomic instructions.

> F Single-precision floating-point
instructions.

> D Double-precision floating-point
instructions.

> C Compressed Instructions.

> Zicsr CSR instructions. The presence of F
implies these.

> Zicntr Base counters and timers.

> Zihpm Hardware performance counters.

> Ziccif Main memory regions with both
the cacheability and coherence PMAs
must support instruction fetch, and any
instruction fetches of naturally aligned
power-of-2 sizes up to min(ILEN,XLEN)
(i.e., 32 bits for RVA22) are atomic.

> Ziccrse Main memory regions with
cacheability and coherence PMAs must
support RsrvEventual.

> Ziccamoa Main memory regions with
cacheability and coherence PMAs must
support AMOArithmetic.

> Zicclsm Misaligned loads and stores
to main memory regions with both the
cacheability and coherence PMAs must
be supported.

> Zab4rs Reservation sets are contiguous,

naturally aligned, and have a maximum of

64 bytes.

Zihintpause Pause instruction.

Zba Address computation.

Zbb Basic bit manipulation.

Zbs Single-bit instructions.

Zic64b Cache blocks must be 64 bytes

in size, naturally aligned in the address

space.

> Zicbom Cache-Block Management
Operations.

> Zicbop Cache-Block Prefetch
Operations.

> Zicboz Cache-Block Zero Operations.

> Zfhmin Half-Precision Floating-point
transfer and convert.

> Zkt Data-independent execution time.

Optional Extensions

> Zfh Half-Precision Floating-Point.

> V Vector Extension.

> Zkn Scalar Crypto NIST Algorithms.

> Zks Scalar Crypto ShangMi Algorithms.

VVVVYV

Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here 14

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

15.2 RISC-V platform specification

RISC-V profiles are specified as extension
instructions, so it is a simple list. In addition, the
RISC-V Platform Specification is defined. This

is a meaningful profile. Currently, there are two
platform profiles: OS-A platform for relatively rich
operating systems such as Linux and Windows
and Platform M for RTOS and bare-metal systems
that run on MCUs used in embedded systems.

The OS-A Platform defines the OS-A Embedded
Platform and the OS-A Server Platform, while
the M Platform defines the Base and Physical
Memory Protection (PMP) Extension. OS-A
requires ISA profiles for RVA22U and RVA22S,
and M Platform requires RVM22M. However, at
the moment, it is said that the specifications of
the RVA are being prioritized, and there is no
material about the RVM22M yet.

They seem to be in a hurry to support Linux

and Android around here. It is important to
understand this situation if you are using RISC-V
or creating your own RISC-V core.

1.6 Why should we use RISC-V?

The content introduced so far has explained
the technical points of RISC-V. The RISC-V
specification can implement not only basic
instructions but also extended instructions
and custom instructions, making it possible to
support various systems. Since it is a new ISA,
it has the advantage of being cleaner than the
existing instruction set (clean instructions are
easy to implement). The advantage of RISC-V is
that many other points improve performance.
Three factors determine performance.

e Performance = (Time/Program)

It is possible to make a clear assessment that the
shorter the time to run the program, the better. If
you put a little more effort into the right side, it will
be easier to understand. We get the following if
we break down the elements on the right side.

o Performance = (Time/Cycle) * (Cycle/
Instruction) * (Number of Instructions/
Program)

Looking at each, (number of instructions/
program) is how many instructions one program
can execute, (cycles/number of instructions)

is how many cycles one instruction can be
executed, and (time/cycle) is how many seconds
can one clock cycle be executed. It isn't very
easy, but let’s think about it.

1. The number of instructions/programs is set in
the Instruction Set Architecture (ISA).

2. The microarchitecture determines the
number of cycles/instructions. For example,
the number of stages in a pipe run, the
superscalar, and the cache configuration are
factors here.

3. Time/cycle has a significant impact on
semiconductor processes. If you try to speed
them up, you will use an expensive micro
process because it involves the manufacture
of semiconductors.

RISC-V is characterized by the fact that 1 and

2 can be changed by the user. In addition, by

changing 1and 2 by the user, it is possible to be

implemented in a cheap semiconductor process.

Therefore, in the case of the highest degree of

freedom, all of 1, 2, and 3 can be changed and

selected by the user.

For example, in Arm’s Cortex series, the
purchased design data (Arm processor core)
is often used as is (there is a separate contract
for customization). Therefore, changing the
semiconductor process is the only way to
improve performance.

RISC-V, on the other hand, allows you to add
instruction sets and change the pipeline
configuration. For example, an app may have

a special operation that can be improved by
implementing a custom instruction that executes
the operation directly. If other companies use
general-purpose CPUs, these custom instrictions
cannot be imitated, so they can significantly
contribute to product differentiation. In addition,
even if competitors try to make similar products,
competing with them at the same clock
frequency will be difficult.

Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here 15

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

A major feature of RISC-V is that it allows

you to select a method that is different from
conventional CPU cores. When developing
semiconductors (or mounting them in FPGAs),

it may be possible to improve performance
(processing power and low power consumption)
by modifying the CPU core itself. In recent years,
in order to make competitive products, there
has been a movement to make competitive
semiconductors by ourselves. Representative
movements will be Apple and Google. Apple
and Google are developing different businesses
on iOS and Android, but both companies

have developed their own semiconductors

and installed them in their products. It will be
interesting to see what happens in the future.

However, RISC-V is an open instruction

set. It is also possible to switch to another
company’s RISC-V. It is also possible to

make semiconductors by ourselves. Strictly
speaking, we need to think about peripherals
and semiconductor processes, but there will
be a big change from the place where nothing
has been possible so far. The third benefit is
the postponement of assignments. Certainly,
the merits of RISC-V are understood, but the
creation of our own CPU cores is not feasible at
the moment. If you are not sure whether you will

don’t have a plan now, if you use RISC-V, you will
be able to add custom instructions at a certain
timing. It is not uncommon for performance

to increase several times by inserting new
instructions. For that reason, you can prepare
for the next one while studying the RISC-V
implementation that has been released, and you
can also purchase CPU cores as IP (Intellectual
Property) without making them yourself.

use custom instructions in the future, you can use
RISC-V to prepare for future changes. Even if you

Let’s expand the discussion from business to
international politics. In the past, there was a
Coordinating Committee for Multilateral Export
Controls (COCOM), which was established

in 1949, began its activities in 1950, and was
disbanded in 1994 due to the end of the Cold
War. If you search for COCOM violations, you can
confirm that various incidents have occurred.
This was a long time ago, but now there is the
issue of trade friction between the United States
and China. Specifically, there have been cases
where CPU technology cannot be exported to
China. This friction can also be related to the
products you develop. From this point of view,
RISC-V with open source ISA, even if a specific
microcontroller cannot be exported, there is a
possibility that it can be replaced with a locally
available one.

1.7 Organization of this document

By now, you should have understood that
RISC-V is different from microcontrollers and
CPUs provided by conventional semiconductor
vendors. In Chapter 2, we will use IAR’s
development environment called EWRISCV to
check the actual instruction set and key points
that will be generated.

Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here 16

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

2. Basic operation of the EWRISCV
development environment

LAY

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

2. Basic operation of the EWRISCV

development environment

The fastest way to learn RISC-V is to create

and run a program. In this case, we will use the
IAR development environment. IAR Embedded
Workbench for RISC-V (from now on referred

to as EWRISCV) is an embedded software
development environment for RISC-V. This
chapter explains how to use the EWRISCV. There
is also a tool called iarbuild.exe for running on

2.1 Precautions when using EWRISCV

The following are some points to note when using

EWRISCV. The following items are required for a

PC to run EWRISCV.

e A Pentium-compatible PC with Windows 7,
Windows 10, or Windows 11, 64-bit versions.

e Atleast 4 GB of RAM and 10 GB of free disk
space.

e Adobe Acrobat Reader to access the product
documentation

In order to use it comfortably, the PC’'s memory
must be 8 Gbytes or more, and the HDD must be
about 20 GB. In addition, for development, we
recommend a multi-monitor environment using
multiple monitors. Please consider the following
points.

the command line, but the basic usage is to

run it using the options set in the integrated
development environment. The compiler itself is
provided as a command line tool called iccriscv.
exe, the linker is provided by ilinkriscv.exe, etc.,

SO you can also use general make commands.
However, in this book, we will explain how to use it
in an integrated development environment.

2.2 Create a project (sample 1)
221 Creating and running a new project

When you start EWRISCYV, the following screen
will appear:

Here
and i

IAR Information Center for RISC-V

xample projects, wser

Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here 18

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

To create a new project, select Project > Create
New Project from the toolbar. Select [main] and
click [OK].

Ag =

forma;

jormation you
es, support informatio

C-STAT Static Analyzis. » kplorer

& |andadvanced product

Hardware solutions

AR in-circult dabug and trace probes.

Then, the following screen will appear, so specify
the folder where you want to create the project
in the input at the top, enter the file name of the

Create New Project

Tool chain: RISCV

Project templates:

B
-3 asm
5.6 Cis
@ C

23 main

] DLib
-1 Estemally built evecutable
-] Libepp

r

£

re

Description:
Creates an empty project.

Cancel

For guestons abeut how to use your IAR product, All about the latest faatures, ne;

project, and finally click [Save]. In this case, set
(2) the project name ProjectS2P1 to the folder (1) /
home/RISCVstudy/S2P1, and (3) click [Save].

e Save As w
& M || « home > RISCVstudy > S2P1 (D - o
EE v FLLWIALST- s . 9
2 L : [3adsl=: 15 HAT
(]
hd
TP L& (N): |ijmszp1| @ 1 -
J74 LDEFE(T): Project Files (".ewp) =
~ 7ANT-ORER QD | Save Cancel

Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here

19

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

This created a project that contains main.c, but
we will also create a workspace now. Select [File]-

e IAR Embedded Workbench IDE - RISC-V 3.30.1

New File ctr=N |

[Save Workspace] to open the screen, specify the
file name of the workspace, and then click [Save].

]
177 New workspace b Genterfor risc

mainc X

Ctrl=0

a
] Open Workspace...
main{ woid)
]

Header/Source File Ctri=Shift-H

© save Workspace As

@) Close
B Save Workspace

G Save Workspace As...

ctrl+F4 jturn|
' i
d| save Ctl-s ‘

G| Save As
B2 save Al

FLVIANT-

@ Close Workspace
Debug

settings

A [« home >

RISCVstudy » S2P1 5 v | o sepimES

[Zrenaan: [wokspoceso] | ~

& Page Setup...
=) Print.
Recent Files »

Recent Workspaces »

~ TRNS-OFET

TP OEH(T): Workspace Files ("eww) %]

Cancel

_Q Exit

Then, the project is created in the following state.
In the figure below, there is a workspace screen
on the left side, an editor screen on the right side,
and main.c is open. EWRISCV is an MDI-type

Windows application with multiple child windows
on the main screen. You can change the position
of child windows or hide them.

@ WorkspaceS2P1 - AR Embedded Workbench IDE - RISC-V 3,30

: File Edit Yiew Project Simulator Jools Myind
Solbom@ & B
Workspace S, | workapace vax
- J
y Db
Y ol -
4 Fies o|| ¢
R E @Project52P1 - Debue “ ig
Project Bane 5
| ?
3

Files belonging to
the project

ProiectS2P1

Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here

int nainl vaid)
{

| retorn 0;

main.c is open on the
editor screen

20

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

At this point, we have the base of a project to
create a C language program with EWRISCV.
When you generate a new project, EWRISCV sets
the options and other settings to their default
state. In this article, we will develop the software

#include <stdio.h>

main(°)

printf("Hello World\n");

return @;

Now that the source code is ready let’s build it:
Select [Project] - [Make] or click the make button.
If you want to compile, click [Project]-[Compile] or
click the compile button. The difference between
compilation and make will also be explained. The
compilation is to compile a file with the extension
.c/.cpp to create a .o file. Files with the .0

e WorkspaceS2P1 - IAR Embedded Workbench IDE - RISC-V 3.30.1

File Edit V\ew[Project | Simulator Tools Window Help

in this default state. Let’s create a Hello World
program. The Hello World program is the first
program in the C programming language. To
start with, change the generated main.c to the
following.

extension are called object files, but they cannot
be executed because the location of variables
and functions has not yet been determined.
Make compile files with the extension .c/.cpp.
Obiject files (.0) are collected and combined

in an executable format output file. In modern
microcontrollers, the output format is called ELF.

|El @ ProjectS2F
[l mainc Remove

13 Create New Project...

¥ Add Existing Project...
L Options... Alt=F7

Version Control System »

\: ! F7
. Compile | Ctrl=F7
@ Rebuild Al

& Clean

& Batch build... F8

Clean Browse Information
C-STAT Static Analysis »

y Build Ctrl+Break
p Build Ctrl=Break

[° Download and Debug | Ctrl=D

* Debug without Downloading

Chrl+Shift <R

N O R@ [AddFies.
Workspace [® Add Group... —
;Dsbug 4] import File List

Add Project Connection... Zstdio.n>
Fles Edit Configurations... I void)

“Hello World#n™);]
03

Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here 21

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Errors and warnings can also occur at compile
time. In EWRISCYV, information is output to the
Build window. At the bottom of the figure below,
there is a Build window, and an error message

appears. The error message shows the file

name and the number of lines in which the error
occurred. Clicking on this line jumps to the line in
the editor where the error occurred.

| @ WorkspaceS2P1 - IAR Embedded Workbench IDE - RISCA 2.30.1

Eile Edit View Project Simulator Tools Window Help

DD @ = om0 =) = QA BO=0O
| Warkspace w B X | AR Information Cente RIS maing X
Debug main()
1 Hinclude <etdio.h
Files) i
3 int wain(void)
= @ProjectS2P1 - Debug v i@ {
8 B maine 5 printf(“Hallo orld$n”)
L@ smoutput ug 1 return 0;
| Projects2p1
| Build
Messagas File Line

Reading project nodes.

man.c
23 Error[Pe0gs] expected 2 ™" CH¥home¥RECVstud¥S2P ¥maine 6

Total ember of errors: 1
Total rumber of warnings: 0
Resalving dependencies.

| Builg Debug log
| Ready

Once there are no errors and the build is
complete, let’s start debugging. The simulator is
used for debugging by default, so click Download
and Debug. This will put the EWRISCV into debug
mode. In this case, printf outputs a string, but
select [View]—[Terminal I/O] for its display.

If there is an error, please check for a typo. A
common problem occurs when double-byte
characters are entered in addition to text
strings and comments. For example, spaces,
semicolons, double quotation marks, and
parentheses are hard to notice.

ﬂ.-'. s i P 1 - LS Bmbeegdichid Waprkbasai b B

Fir Ecd Projeil Oeug Hewldlos Tosh Windss Helg
(] [T B 3 0 - o = | .
Wprkspace | | VRO T
| St Papasis LT
it
Irs 5T el
|| Fhims | o
|| nk maint wa]
| = WProp Breskpandt
|-a Elva i] pramtf ik
L o | T o Sk 5| , returs
P
WU B
WY Liws Winkch
AN Cuck Wakoh
T Aeic
B Laca
B St
ARy B
I Reghier L]
| PraectSH [T Diacieniy
e] o i
B5 | Spmbobn Hrerory
4 M y = -y
i Flg T‘i i bizing Hra O ¥ ilaed IR Bvehann WSS ER0 - 50 Vi r g o oo dabe g e
i R cornpiate
Soam ki LB} Coxde Cavirag pbuspaa W horre WSSV o husy WEDFT i Debe g § Exe A Propoc t 5290 oot
:|.--I.'-:'! imagn =
LR=
Gt By g

Dipan ther Termanai 00 sareices Lnom
v

- rarac

Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here 22

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Then, the Terminal I/O screen will open,
as shown in the figure, so please execute
it. Hello World appears on the Terminal
I/0 screen. If you execute the program in

detail, you can proceed by combining step
over, step into, step out, etc. If you perform
areset, you can perform it again.

B Qutput ‘

) return 0;

e WorkspaceS2P1 - IAR Embedded Workbench IDE - RISC-V 3.30.1 =) X
Fi Edit View Projedt Debug Simulator Tools Window Help
DO RO B LEGLD 2602 5B RN A8=6c0 o3 i, 05]
‘Warkspace v B X | jar information mainc X w | Terminal /O w @ X Disassembly v ax
Debua | |main{} 0o oupu Lotie: OF Goto:
— el stdio.h>
| T Finclude Gtdio.h =
it = D, || A e] 0:2000°03b0: 0x0008°a503 v
jaot = . B 0x2000°03b4: 0x0000°0000 DC32
aine 5[printf("tello World¥™); a7 v o)

nain:

0?17 c.add
06

3t %) 3
0x2000°03be: 0x2000°0537 lui
0x2000"03c0: 0x3d05°0513 addi
0x2000"03c4: Ox37dl c.jal

02000036 0x450 c
0x2000°03c8: 0x40k2 c.
0x2000°03ca: OxE14] c.add
c
o

- _— 052000’ 03ce: 0x8082 et
E" M 0%2000°03ce: UXEUE’J 16
Projects 2P1 [] sutersiee: 0
Debug Log vax
Log
Sun Nov 05, 2023 08:2334: IAR Embedded Workbench 3.30.1 (riscvproc.dll)
Sun Now 05, 2023 08:23:34: G-SPY Processor Descriptor for RISG-V
Sun Now 05, 2023 08:2334: G-8PY Simulstor Driver for RISG-V
Sun New 05, 2023 08:2334: Driver s using the C¥Program Files¥IAR Systems¥EWRISCV-3301¥riscv¥ confied debugeer¥iorisey ddf device description file.
Sun Now 05, 2023 08:2335: Downlosd complets.
Sun Now 05, 2023 08:2335: Losded debuges: G¥home¥RISCVstudy¥52P 1 ¥Debug ¥Exe¥ProjectS2P 1 out
Sun Now 05, 2023 08:2335: Target reset
BUlld Debug Log
Ready Errors 0, Warnings 0 In3 Cot1 Japanese (Shift-lls) CAP NUM _EBE

Terminal I/0 is not the only screen that can
be used for debugging. As shown in the
figure below, various information can be

Memory, Watch, and Registers. For more
detailed information, check the EWRISCV
manual.

displayed. Commonly used ones include

@ WorkspaceS2P1 - 1AR Embedded Workbench IDE - RISCV 3.30.1

File Edit V\EWI Project Debug Simulator Tools Window Help

D N H Messages b‘ " Q o= < 0 > B .. =
Warkspace E Workspace nformation Centerfor RISCY mainc X w | Terminal /O
‘Debug Source Browser) -_F-(-). Output:
—_— CSTRE » #include <stdio.h> c
Files : " ' i
I int main(void)
B @Proj EBreakpoints
Brd = printf("Hello Yorld¥n");
Bt I8 call stack return 0;
Watch r
€Y Live Watch
€% Quick Watch
% Auto
€ Locals
€} Statics
Memory »
Input: Chl cod
Registers L3 _n'w Ssneies |
Project52] Disassembly k] J Buffer size: ¢
Debug Log Stack »
"T . Symbalic Memory ‘
Sun Ng q Terminal /0 Hded Warkbench 3.30.1 (riscuproc dil)
Sun Ng — ocessor Descriptor for RIBC-V
Sun Nd Mixes ¥ Jruilstor Driver for RISC-v
Sun Ng Symbals sing the C¥Program Files¥IAR SysternsVEWRISCY-3301¥riscu¥ contig¥dabuggery ioriscy ddf devic
Sun Ng jcomplete.
Sur Nef (] Code Coverage fbugee: C¥home¥RISCVstudy¥S2P1¥Debus¥ExelProjectS2P1 out
Sun No B] images ket
' #i Cores

Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here 23

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

During debugging, you can edit the file, but you
can'’t actually change the options. When you are
finished debugging, click Exit Debugger.

222 Project structure

So, what is the project structure of EWRISCV?
You will see the following.

e Workspace (.eww)

o Project files (.ewp)

e main.c

e [Folder]Debug

[Folder] Browselnfo
[Folder] EXE
[Folder] List
[Folder] Obj
[Folder] setting

\

VVVYV

The following files/folders are located in the folder
where this project was created. A workspace

is a container for managing projects. You can
manage multiple projects in one workspace. The
project file has two configurations: Debug and
Release. Due to the default Debug configuration,
there is only a Debug folder at this stage. There
are four folders under that folder: Browselnfo,
Exe, List, and Obj. The folder Browselnfo contains
information such as the analysis of the source
code. Therefore, there is no need for the user to
see it directly. The folder Exe is the location of
the Made Executable Format (ELF). When you

° AR Embedded Workbench IDE

Workspace

Files o

v 3 X AR Info

generate a HEX file, etc., it will be generated in
this Exe folder by default. In the folder List, MAP
files and other files are placed. The folder Obj
contains the compiled .o files.

It can be difficult to check in large projects, so
let’s check what is generated where in these
small projects.

223 About the manual

When developing software, it is necessary to
research how to use compilers, assemblers, etc.
EWRISCYV provides PDF manuals and online help.
If you select [help] on the EWRISCV development
screen, you can select manuals, etc. (red box in
the figure below).

e Forinformation about the development
environment, see the IDE Project
Management and Building Guide

e Forinformation about the C/C++ compiler
and linker, see the C/C++ Development
Guide

e For details about assembler, see the
Assembler User Guide

e For debugging information, see C-SPY
Debugging Guide

e For details about debug probes, see the
Debug Probe User Guide

File Edit View Project Tools .'.mdc—w

Content
Index...

Search

Product updates

Release notes

IDE Project Management and Building Guide
C/Ce « Development Guide

Assembler User Guide

C-5F Debugging Guide

C-STAT Static Analysis Guide

Debug Probes User Guide

Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here

IAR on the Web
Information Center
License Manager...

About »

24

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

For example, when you open the C/C++
Development Guide, you will see a PDF file with
the following display: This C/C++ Development

IAR C/C++ Development
Guide
Compiling and Linking
for
RISC-V
@
LA
Guide contains information about the following: Part2. Reference Information

Part 1 explains the basic concepts, and Part 2
describes the options and other details. Compiler options

Linker options

About data types

Extended keywords

About Pragmas

Built-in functions

About linker settings

About sections used by the compiler
About the Stack Analysis Settings File
C++/C Language Implementation
Dependencies

Partl. How to use the development tools

Development environment
Development of embedded applications
About storing data About Functions
Links using ILINK

About the Runtime Environment
Interface with assembler, etc.

When you press the F1 key in the EWRISCV
window, the online help is displayed.

[IAR Embedded Workbench Help for RISCV o x

o E e 2 &

FEr R =3 B0 -4 O)
UC) $-0-K(N) M|(S«] IAR Systems ~

[£] 1AR online help
(]} IDE Project Management anc
5 @ The development environ| || Project management : Reference information on managing projects - Waorkspace window
({3 Project management
7 @ Introduction to manag
+ @ Managing projects
- (Q) Reference informtion Workspace window

i Workspace window) What do you want to do?
2] Create Mew Praject
4] Configurations for ¢

« Learn about project management, see Introduction to managing projec

« Leam how to: Managing projects

+ Get reference information about the Workspace window, see below the line.

The Workspace window is available from the View menu

Use this window to access your projects and files during the application development.

Drop-down list »

Atthe top of the window there is @ drop-down list where you can choose a build configuration fo display in
£ 2 the window for a specific project

m Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here 25

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

2.3 Options

First, let’s take a look at how to set project options
and what they do. To open the project options in
EWRISCYV, double-click v (above the red arrow

below) to the right of the project name on the

workspace window, or select the project name
in the workspace window and select [Project]-

Options.

set options on the right.

23.1General Options

Fil Edit Vi P b Simulats Tool. Wind
e Edt ew - Project - Simulstar ool WIndeW 1 options for node *Projects2p1®
00 e = [Tt
Workspace ¥ 4°X | AR Informat
Debug .| Imain() Category:
=il
General Options.
Files o LA e
3 in{ | Static Analysis
=l JProjectS2P1 — Debug 4@ { C/C++ Compler
2 Bmaine g || |t Library Configuration Library Options 1 Library Options 2
L@ s output 203 Ep Target ISA Extensions Code Generation Output
Custom Buil
21 £l Device Base ISA
Linker .
Build Actions |Rva2 [=n O Rv32E
Debugger @ Rv32l
GDB Server R
‘5'1*“ Standard extensions
imulator
Floating-point settings:
Third-Party Driver LU
En HFc U D v
Projects2P1 Bit manipulation
Build Mzba Hzbb Hzbe Hzbs
Messages File Line
Code size reduction Scalar cryptography
ProjectS2P1 — Debug Zkn
Reading project nodes:
Rro) mp M zks
Build is up to date
Resalving dependencies...
Build succeeded
— - Cancel
Build ebug Log

The part surrounded by the red frame in the
above figure is the Options screen. This Option
screen has categories on the left and a place to

In General Options, you can 1) specify options
related to the RISC-V instruction set, 2) stack,

heap size, and code model, 3) library settings,
and 4) output format and folder settings.

On the Project Options

On the Project Options screen, select General
Options under Category. Tabs for Target and ISA
Extensions allow you to set options related to the

instruction set.

Output Convertar
Custom Buld
Lirfer

Buld Actons
Debugger

GDA Server

Ljet

Simulator

Third-Party Driver

Code size reduction

Library Options 1 Library Options 2

Code Generation Output

Base ISA

Floating-paint settings

EPU D

Scalar cryptography
EAzn

[zg

Cancel

Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here

€/C 4+ Compler .
i Libeary Configuration Library Options 1

Output Converter

Custom Build -
. Cache management
Wirker
Build Actions HAZicbom] M Zickop EAZick
Debugger
GDE Server

Andes extensions ose
Lt

Fxandespert
Smulator

Options for node "ProjectSaP1” X | | Options for node "Projects2pr x
Category [Category
e criere
Static Analysis || |state Analyss
C/C++ Compller |
Asserrbier

Library Options 2

Code Generation

@ None
Third Party Driver CoDense (O Xandesdsp
Oe
[Exclude JAL instruction
0K

Output

Ngswincache

26

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

The most important part is [Device], and if the
microcontroller to be used is decided, it can be
specified here to set the extension instructions
automatically. For example, if you select SiFive's
HiFivel Rev B, the instruction set options are

set as follows: If you check the implementation
instructions for HiFivel Rev B, it says RV32IMAC,
so you can see that the RV32l + M + A + C option

is set (marked with a green box).

Options for node "P" X
Category:
| tatic Analysis
C/C++ Compiler = = =
A Library Configuration Library Options 1 Library Options 2 Library Configuration Library Options 1 Library Optiens 2
S ISA Extensions Code Generation Output Target ISA Extensions Cocle Ge oo Output
Custom Buid
Device Base ISA Cache management
Linker
Buid Actions | siFive HiFive1 Rev 8 | | B Zicbom b z eswi
Debugger
GDE Server Andes extensions Dsp
et Standard extensions X
Simulator Floating-point settings:
Third-Party Driver CoDense
EPU |None ~ P
2 E je JAL instruction
Bit manipulation L
Zbk
Code size reduction Scalar cryptography
Cancel 0K Cancel

In EWRISCYV, basic and extended instructions
can be specified individually. To do this, click

the Device selection button (arrow in the figure
below), select [Generic], and select [RV32] or
[RV64]. For other extension instructions, you can

select any extension instruction by choosing to
check or not check one by one (of course, there
are also dependent instructions, so it is not
completely free to choose).

Options for node "ProjectS2P1" X
Category:
General Options I
Static Analysis
C/C++ Compiler : - -
Assembler Library Configuration Library Options 1 Library Options 2
Output Converter Target ISA Extensions Code Generation Output
Custom Build
i Device ‘ Base ISA
i
Build Actions RV32 QRv32E
Debugger =
=3 >
GDB Server Ande
I-jet ’ Canaan > 1
Standard extensions |
Simulator Codasip >
Third-Party Driver M A Espressif >
AcC
BN = ESWIN > |
Bit manipulation Fraunhofer > |
Mzba Hzbb Hzbe Hzbs froikorace t
| Generic | L RV32 |L,:
Code size reduction Sci GigaDevice > RVe4
= HiSilicon > K] ‘ r

Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here

- v

27

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

You can choose from the following three basic
instruction sets.

o RV32E: 32-bit, 16 general-purpose registers
o RV32I: 32-bit, 32 general-purpose registers
o RV64l: 64-bit, 32 general-purpose registers

In the Target option, the following can be selected
as standard extension instructions:
¢ M: Integer multiplication/division
e A: Atomic Instruction
e C: Compressed (16-bit) instruction
e N: User-level interrupt
e B: Bit manipulation instruction
Zba: Instructions for address calculation
Zbb: Underlying bit instruction
Zbc: Carryless multiplication
Zbs: Single-bit manipulation instruction

The following floating-point extension

instructions are available:

¢ F: Single-precision floating-point arithmetic
in floating-point registers

o Zfinx: Single-precision floating-point
arithmetic on integer registers

e D: Double-precision floating-point arithmetic
in floating-point registers

e Zdinx: Double-precision floating-point
arithmetic on integer registers

Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here

You can choose from the following options for

code size reduction:

e Zcb:16-bit extension instruction to add C
extension

e Zcmp: 16-bit extension instruction that makes
the code smaller with stack manipulation
instructions

For cryptographic extensions, you can choose

from:

e Zkn: Extensions for NIST Algorithms

e Zks: Extended instructions for ShangMi
Algorithms

Cache management enhancements include the

following options:

Zicbom: Cache Block Management

Zicbop—Cache prefetch operation

Zicboz: Cache Block Zero Processing

Xeswincache: Non-standard cache

management extensions

Andes extensions can be selected from the

following:

o Xandesperf: Andes’ performance
enhancement AndeStar V5 Performance

e Xcodense: Andes’ code size compression
extension AndeStar V5 CoDense

The following DSP extensions are available:

¢ None: Do not use DSP extensions

o Xandesdsp: DSP extension from Andes

e P:Uses a subset of the P extensions, Zpn and
Zbpbo

o Zpsfoperand: Use all P extensions

28

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Stack, heap size, and code model

The CodeGenration options screen allows you to
configure the code model and set the stack/heap
size.

Options for node "ProjectS2P1"

Cateqon:

Static Analysis
C/C++ Compiler

Iet
Simulator
Third-Party Driver

Asewiier Library Configuration Library OP‘EIDHS 1 Library Options 2
Output Convertar Target ISA Extensions Code Generation Output
Custom Build

. Code model Stack/Heap

Linker ; X
Build Actions Stack size: 0x 1000 [
Debugger)

- | ize: 0x 1000
GD8 Server Heap size 2 |

[J Allow misaligned data accesses

0K Cancel

Code Model is an option to select for 64-

bit RV64l. In terms of functionality, Medlow

is an option to address with 32-bit absolute
values. Because it is signed and processed,

the area of memory that can be accessed is
0x0000000000000000 to 0x00000000T7Fffffff
or Oxffffffff 80000000 to Oxffffffffffffff.

Medany, on the other hand, addresses in

relation to the PC. At this time, you can specify

a relative address from -2GB to +2GB. Medlow
had a space of +-2 GB centered on the 0x0, but
because it is PC-relative, the space that can be
referenced is larger than Medlow’s. However, you
can only refer to -2 GB to +2 GB addresses from
the PC, so be careful when using RV64l.

m Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here 29

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Library

Library Configuration, Library Option1, and Library
Option2 configure the library’s settings. First, in
Library Configuration, you can choose from none,
Normal, FULL, libc++, and custom libraries.

T
Options for node *ProjectS2P1"

X
| categay
| 5 & 3
loeneral Optons | Library: Description:
———y Y ep———— YT P——
€/C++ Compller _ library. Full locale interface, C locale, file descriptor
) Target ISA Extersions Code Generation Output g 3 ks
Assembler =5 support, multibytes in printf and scanf, and hex
Cutpol Corwerker Library Configuration Library Options ¥ Library Options 2 floats in strtod.
Custom Buld
poy Library:
B e
Debugger
G0B Server
| | vt
Simator
| | Thirdparty river
[Enable thread support in library .
Library: Description:
ow-level interface impl =
A complete C/C++17 runtime library. Full locale
Stdout/Stderr N b
C ; interface, C locale, file descriptor support
® AR Breakpoint @VjatAR Braaipaint multibytes in printf and scanf and hex floats in
| O Via Trace fTC strtod.
|
3 Cancel

e Normal: C/C++14 libraries (C locale only,

no multibyte support, no FILE support)
FULL: C/C++14 libraries (full set)

libc++: C/C++17 libraries (full set)

e custom: This is a specification when using
your own C/C++ library

standard input/output, such as printf, to the
debugger screen. Specify None if you don’t
want to use it or IAR Breakpoint if you're going
to use it. For stdout/sterr, specify how to output
standard output to the debugger. Normally,
you would choose Via IAR Breakpoint, which
outputs data at break, but for devices with an
Instrumentation Trace Component (ITC), you
can set Via Trace ITC.

Library settings can be set for printf/scanf,
math functions, and the heap.

Library Configuration allows you to specify
libraries for low-level interfaces. This is a
setting for whether or not to use a file on the
PC when the debugger is connected or to
use a function for the debugger that executes

Options for node "ProjectS2P1" X\ X

Category:
(General Options
Static Analysis

C/C++ Compiler

et Target ISA Extensions Code Generation Output Target ISA Extensions Code Generation Output
Output Converter Library Configuration Library Options 1 Library Options 2 Library Configuration Library Options 1 Library Options 2
Custom Build

L”k ! Printf formatter Heap selection

inker

Buid Actiorie Auto ~| | Automatic choice of formatter, without @A;‘}émiﬂé

multibyte support.
- [Enable muttib, OAdvanced heap
. Enable multibyte support

GDB Server O pssic emi

Ijet

S”m R Scanf formatter O Nofreetiesp

Third-Party Driver i bt

Automatic choice of formatter, without

multibyte support, Locale support

[Enable multibyte support [0 Use in addition to the C locale:

Math functions
Default v

Default variants of cos, sin, tan, log
log10, pow, and exp.

[Buffered terminal output

0K Cancel

OK Cancel

Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here 30

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Libraries have a significant impact on the size following is the format specification in printf. The
of the code implemented, depending on the NoMB at the end of the name means “do not use
features they use. If there is a feature that you multibytes”.
do not use, please select the correct option. The
printf features Tiny Small/ Large/ Full/
SmallNoMB LargeNoMB FUIINoMB
Basic specifiers ¢, d, i, 0, p, s, u, X, X, and % YES YES YES YES
Multibyte NO YES/NO YES/NO YES/NO
Floating-point specifiers a and A NO NO NO YES
Floating-point specifiers g, E, f, F, g, and G NO NO YES YES
Conversion specifier n NO NO YES YES
Format flag +, -, #, O, and space NO YES YES YES
Length modifiers h, I, L, s, t, and Z NO YES YES YES
Field width and precision, including * NO YES YES YES
long long support NO NO YES YES
wchar_t support NO NO NO YES
The scanf format specification is as follows. The
scanf format specification is as follows.
scanf Description Small/ Large/ Full/
SmallNoMB LargeNoMB FUIINoMB
Basic specifiers ¢, d, i, 0, p, S, U, X, X, and % YES YES YES
Multibyte support YES/NO YES/NO YES/NO
Floating-point specifiers a, and A NO NO YES
Floating-point specifiers g, E, f, F, g, and G NO NO YES
Conversion specifier n NO NO YES
Scanset[and] NO YES YES
Assignment suppressing * NO YES YES
long long support NO NO YES
wchar_t support NO NO YES
The heap algorithm can also be optionally ¢ Basic Heap: Recommended option if you
selected. The heap is the memory used for don't use HEAP too much
malloc/free in C and new/delete in C++. ¢ No-free Heap: Recommended option if you
e Automatic: IAR determines the situation and don't want to free up memory
selects one of the following three options:
e Advanced Heap: The best option for heavy
HEAP users
]

Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here

31

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Output Format & Folder Settings

The Output option specifies the output as a
library or executable format and specifies the
output folder for each product. If there are no
particular problems, it is better to operate it as it
is. The final product (executables and libraries)
is stored in the Executables/Libraries folder, and
the map files are stored in the List Files folder.

......

Catmpony.

General Jpbons

Static Analysis

C/C++ Compiles

Pt il Library Configuration Library Options 1 Library Options 2

Target Extentions Code G "
Output Converter arget I5A Extensions Code Generation

Chutpu
Custom Buld

Linker !
Build Actions ® Executable Library
Debugger -
GOA Server Output directones
Tjet Executables/libranes:
S tor DebughExe
Thir d-Party Divver =
Obgect files:
Debug¥Oby
Ligt files:

DebughlList

Brow

iles

ok Cancel

23.2 C/C++ Compiler

C/C++ compiler options are specified here.
This section describes 1) language settings,
2) optimization settings, 3) output settings,
4) preprocessor settings, and 5) diagnostics
settings.

Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here 32

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Language settings

EWRISCV can compile C or C++ languages.
Therefore, it is necessary to choose the language
C/C++. You can set the Language on the options
screen of Languagel. If the extension is .c, itis C
language, and if the extension is .cpp, itis C++
language, Auto (Extension based) can also be
used. In the C dialect, you can choose between
C89 and the current C18 standard. In Language
Conformance, you can choose to select from

the following three levels of compliance with the
standard. In an embedded system, you may want
to use CPU-specific instructions, but it may be
troublesome to write a program in assembler,

so IAR has prepared language extensions for
embedded systems. For example, to declare

an interrupt handler in C, we have the keyword
__interrupt.

e Standard with IAR extensions—If you want to
enable IAR extensions

e Standard— Disables IAR extensions, but does
not adhere strictly to the C or C++ dialect you

¢ have selected. Some very useful relaxations to
C or C++ are still available.

e Strict: When strictly adhering to the language

specification

For language 2, some points need to be
confirmed. If you look at C language books, you
will see some that say, “char is signed, and if only
positive integers are handled, it is defined as
unsigned char,” but that is not correct. Inthe C
language standard, the sign of char is left to the
implementation. There are many cases where
char is used as an unsigned char. EWRISCV allows
the user to specify it. Define it with the type you
want to use.

Options for node "ProjectS2P1"

pq"

Category:
[C] Mutti-file Compilation

Discard Unused Publics

General Options
Static Analysis

Factory Settings

Factory Settings
[] Mutti-file Compilation

CJC++ Compiler - n - - - : : :
Assembler Preprocessor Diagnostics Encodings Extra Options Preprocessor Diagnostics Encodings Extra Options
Output Converter language? | Optimizations Output List * Language 1 Optimizations ~ Output List
Custom Build
Linker Language Language conformance Plain ‘char' is
i
Buid Actions @®c @ Standard with IAR extensions
Debugger (O Standard
GDB Server (O Auto (extension based) O Strict
Ijet Floating-point semantics
Simulator Cdialect C++ options ° 9P
Ca9 Dest (®) Strict conformance
Third-Party Driver (@] Destr
(@ Standard C (O Relaxed (smaller and/or faster)
[Allow VLA
[C++ inline semantics.
[Require prototypes
Cancel OK Cancel

Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here

33

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Optimization settings

In the Optimizations tab, you can choose to code more difficult. Optimizations can change
optimize as None, Low, Medium, or High, the order of execution, expand loops, or perform
depending on the level. Keep in mind that calculations in advance, making it difficult to
optimizations can make debugging in source step through them in the order in which they are

described. If you want to debug at the source
code level, select None or Low.

Options for node “ProjectSzP 1"

Categary:

Factoy Settings
General Options [Multi-file Compdation
Static Analysis Discard Bruiiad P

Assembler Preprocessor Diagnastics Encodings

Extra Options
Language 2 Optimizations

Output List

Output Converter Language 1
Custom Build
Linker

Build Actions
Debugger
GDB Server
It
Simulator

Enabled transformations:

Bl m|
Thrd-Party Driver —==

oK Cancel

Output settings

In the Output tab, there is an Output setting In the List tab, you can specify the output of
called Generate Debug Information. To debug the the compiled list file and create assembler
source code, be sure to check Generate Debug output. It is a good idea to use a list file to create
Information. assembler output to check how a C program is
compiled. Please note that assembler output is
not possible in the evaluation version.

Options for node “ProjectS2P1*

Category:

General Options
Static Analysis
C/C++ Compiler

Assembler Preprocessor

Factory Settings Factory Settings
[Multi-ile Compilation] Mukiile Capilation

Pubh
Do s Encodings Extra Options
Output Converter Language 1

language2 Optimizations List
Custom Build % o

Linker [Generate debug information

Build Actions
Debugger
GDB Server

Preprocessor

Diagnostics Encodings
Language 1

Extra Options
Language 2

Optimizations Output

[JQutput list file

Tet

[] Output assembler file
Simulator ;
Third-Party Driver

0K Cancel

oK Cancel

Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here

34

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Configuring the preprocessor

In EWRISCV, you can add a header file to the not configure the include paths correctly, an error
Workspace window as shown below, but if you do

will occur if the header is not present, and you will
not be able to compile.

0 W - IAR Embedded Workbench IDE - RISC-V 3.30.1
File Edit View Simulator Tools Window Help
NNRe = i)

Workspace * B X | mainc x

14

1 |Debug

~

Hinelude <ztdio.h>

Files finelude “foo.h

Bl @52P01 - Debuz
l— B)iooh

rrain.c

B Output

(]

o
i int main{ void }
L] { 7 .
printf{“Hello World#n”);
) return 0;

|

00 00 1 00 LR s L) 00—

Overview

CPF14 S2P0

Build

Messazes

File
TAR C/C++ Compiler 43.30.1 3961/ W64 for RISG-Y

Copyright 2018-2023 IAR Systerms AB.

Tirme-lirmited license — IAR Embedded Workbench for RISC-Y 2.30

24 Fatal Error[Pe1656]: cannat open source file “foo k™ C#llzer:

searched: " C¥Users¥Hiroki Akaboshi¥Docurnents¥Work¥ 231 1(Mow)¥Out

pUE¥0D00 Fiscy booky Samples¥ S2P01%™

searched: " G¥Program Files¥IAR Systems¥EWRISCY-3301¥riscv¥ inc¥ ™
searched: " CG¥Program Files¥I8R Systems¥EWRISCY-3301¥riscv inc¥c

y

current directory: ” G ¥Users¥Hiroki Akaboshi# Documents¥Work# 231 1(M
o EOUTPLEE 0SS riccy_ book¥ Samples¥S2P01¥Debug”

Debug Log

In EWRISCYV, you need to specify the folders

where header files are located. If nothing is
specified selected, the folder with the project
file, the inc folder, and the inc/c folder of the

Opticns for node "ProjectS2P1

| Categary:

General Opfions] Mutiile Compilation

Static Analysis

Custom Buld
Linker

Build Actions
Debugger

GDB Server

I4et

Simulator
Third-Party Driver

Preinclude file:

Defined symbol

: (one per line)

C/C++ Compiler
Assembler Language 1 lﬂnqu.aqﬁ 2 Optimizations Output List
Output Converter Preprocessor Diagnostics

EWRISCV toolchain will be searched. If you want
to search other folders, specify the folders in

the Additional include directories field of the
Preprocessor tab.

Faciony Selftings

Encodings Exira Options

[Preprocessor output to file

119 Cancel

Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here

35

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Avoid specifying a folder with an absolute path,
as this will lead to many problems when sharing
the project. EWRISCV can refer to the location of
the project folder (the folder where the .ewp file
is located) in a relative fashion, with $PROJ_DIRS,
so if you specify:

$PROJ_DIR$\inc

It will also search the inc folder directly under the
project folder. If there is more than one, add it on
a different line.

Also, in order to set the equivalent of #define
SYM (1) at compile time, specify the define inthe
Preprocessor tab , Define Symbols window.

Options for node "ProjectS2P1” X
Categary: Factory Settings
General Options [Mudtisiles Comrpilation
Static Analysis Discard Urused Publ
-

Acsembler Language 1 L&I‘EJJ?)E_IE e Optimizations Output List
Output Converter Preprocessor Diagnostics Encodings Extra Options
syeigaan CJEnable remarks
Linker
Build Actions Suppress these diagnostics:
Debugger |
GDA Sen ;
s Treat these as remarks:
et
Simulator |
Third-Party Driver Treat these as wamnings:
Treat these as gmmors:
|
[Ireat all wamings as errors
Ok Carcel

If you simply define SYM, the value is set to
1. If you want to set a value other than 1, use
SYM=100.

Diagnostics

In EWRISCYV, the settings for errors and warnings
can be changed. First, in the Diagnostics option,
you can enable remarks. A remark is not an error
but a message to the effect that you should be
careful. If you want to make your program more
reliable, you can look at this output and change
the code in some cases. You can also change the
level of errors and warnings or stop the output.

Get the most out of this

eBook - download the IAR Embedded Workbench for RISC-V here

36

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

For example, in the built-in, the main function
continues processing in a while(1) loop, so nho
further processing is performed. In the program

it is possible to ignore this warning even if it
appears, but you can change the diagnostic
settings to change this warning to another

on the left below, there is a description of “return
0;” after the while loop, but this line is never
executed. In EWRISCYV, the warning is output as
[Pe111]. Since there is no problem as a program,

@ W - AR Ebecided Workbench IDE - RSCV 330

remark. By specifying Pel111in the middle of the
figure below, you can confirm that the warning
disappeared at the time of build by remarking.

X
Fle Edt View Project Sim Tools Window Help oip
EDO & = o6 &
manc x| CHe00 Facky Satlings oresy | mang x
General Cptions [Muifie Compilation Dot | {main()
. v i bt I axtorn vold foalvold):
extern void foolvoid); o e s]
E) int waint void
3 W) imizations i ist 48
§ it nain(void) Optimization: Output List 13 while (1) {
while (1) { Encodings Extra Options B[He00}
foo(); 8
b) return 0;
0|)
return (; i
j—
 p—| =
v
P
File 1
it these as em i
C¥home¥RISCVstud File
DI Trest all wemings a¢ emors
Builg
[3 Cancel .
= [o] cone = v
Ready

In EWRISCYV, the file created when building is

an executable file in ELF format. However, if you
want to use it with another device, such as a ROM
writer, you may need to output in HEX or SREC

You can choose from the following four file
formats. The most commonly used formats are

Intel and Motorola.

format. At that time, the Output Converter option e Motorola S format
allows you to specify additional outputs. e Intel Format

e Binary

e Simple-code

Category:

General Options
Static Analysis
C/C++ Compiler
Assembler
Custom Build
Build Actions Output format:
Linker
Debugger
GDB Server Qutput file
Ijet

Output

Simulator
Third-Party Driver

Generate additional output
Motorola S-records

[JOverride default

Factory Settings

Intel Extended hex
Raw binary
Simple-code

0K Cancel

Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here 37

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

234 Linker

The linker integrates the .o file created by the
C/C++ compiler and the necessary data and
outputs the program in an executable format.
The file that describes the linker configuration is
called the linker configuration file, but in IAR, it
has a .icf extension.

IAR provides a linker configuration file for the
microcontroller so that you can set it with the
Config option. On the left side of the figure below,
we will use the default Linker Configuration file.
This default linker configuration file is located in:

Colpoac Factory Seltings
General Optans

Static Analysis
CfC++ Compier
Assembler
Qutput Converter
Custom Buid

Checksum Encodings Extra Options
Optimizations ~ Advanced Output List

Cancel

Library option setting, but by default, Automatic
runtime library selection is enabled. Some people
don't like the fact that the library is automatically
built, but since the compiler is devising code
generation, please basically enable and use

it here (or if you can fully understand the code
generated by the compiler and map the mapping
yourself, it is possible manually).

Although it is under the Library option, it is
possible to specify the Program Entry. Again, by
default, it is __iar_program_start, but the user can

2define iagnostic
ol Inpu G
file
Custom Bud
sinid] verri Buld Actions
Debugger rorpp— 1 i
i — GDE Server
Lt Configuration fle symbel definitions: (one per line) Tget =
u

\riscv\config\linker

under the EWRISCV installation folder.

However, in reality, linker settings are often
specified individually for each project. Copying
is frequently used to copy the default file to the
project folder. Since the folder where the project
file is located is the project, it can be indicated
by the folder $PROJ_DIRS. So, on the right side
of the figure below, $PROJ_DIR$generic.icf is
specified as the linker configuration file. You can
also define the symbols to be used in the linker
configuration file under it.

Categoty Factoly Settings
General Options

Static Analysss
€/C 4+ Compiler

piatib Diagnostics Checksum Encodings Extra Options

Output Converter

Optimizations ~ Advanced Output List

ROM2START=0x4000000
‘PG‘.IZ[ND.L‘-{\,‘J”U

Configuraticn file symbol definitions: {one per line) ’

I

change it. This is the information that the linker
needs to create an executable file. By specifying
the function (label) to be executed immediately
after the reset, the functions and variables
necessary for executing the program are placed
from here. Therefore, functions that are not
explicitly called or variables that are not explicitly
accessed are not linked because the linker
determines that they are not needed. In such
cases, specify them individually with -keep (which
can be specified with the following Input option).

Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here 38

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Options for node "S2P01"

Categony:

Factory Setings
General Options

Static Analysis
P i
i;zm:):mler #define Diagnostics Checksum Encodings Extra Options
Output Converter Config Library Input Optimizations
Custom Build
Build Actions B Automatic runtime library selection
Additional libraries: (one per ling)
Debugger
GDE Server

I-jet

Advanced Output List

Simulator
Third-Party Driver
L| Override default program entry

B

In the Input option, you can specify that the
symbol should be kept so that functions without
explicit calls and variables without explicit access
are not deleted (left in the executable form). In the
figure below, “YYYY” is specified.

In EWRISCV, when importing binary data such
as image files and audio files into an executable
format, specify it in Raw binary Image under the
Input option. That data specifies the symbol
name, section, and alignment.

Options for node *52P01"

Categay:

: Factory Settings
General Options

Static Analysis
CJC++ Compiler
Pr— #define Diagnostics Checksum Encodings Extra Options
Output Converter Config Library Input Optimizations Advanced

Custom Build
Build Actions
o
Debugger
GDB Server
It
Simutator
Third-Party Driver

Output List

Keep symbols: (one per ling)

Raw binary image
File: Symbol: Section: Align:

Symbol: Section: Align:

File:

==

Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here 39

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

For output, take a look at the Output and List
options. The left side of the figure below is the
Output option, but it is possible to specify the file
name for the output. By default, it will be
project_name.out. Below that, there is a check to
see if you want to include debugging information,
but basically, you should include it. If you don’t
include debug information, you won't be able to
back up the source code. Some people mistakenly
think that the final ROM size will be larger because

Factory Sofing:

EWRISCYV can also perform stack analysis, which
is specified in the linker options. Check [Linker]—
[Advanced]—[Enable stack usage analysis] to

Options for node "P”

the file size will be larger. After all, there is debug
information, but the ROM size is the same with
or without debug information. It is also possible
to remove the debug information (using the
command ielftool provided by EWRISCV).

If you also look at the List option, you can output
a MAP file by enabling the “Generate linker map
file.” If you have completed the build but do not
have a MAP file, please check here.

Factoy Settings

Cancel

perform the analysis. The analysis results are
output to MAP, but they can also be output in
XML.

| Categony:

General Options
Static Analysis

C/C++ Compier = o
Fdefin Ostics

Assembler & lf‘ ine iagnosti

Output Converter Config Library Input

Factoy Settings

Checksum Encodings Extra Options
Optimizations Output List

Custom Build
I [#] Enable stack usage analysis

Control file:

Debugger
GDB Server
Ijet
Simulator
Third-Party Driver

‘ jons

Call graph output (XML):

[(]Replace linker executable w

ith wrapper (Experimental)

Cancel

Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here

40

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

23.5 Debugger

EWRISCV has several debug interfaces, which you can select GDB Server, I-jet, Simulator, etc. In
can be switched between options. In this section, Chapter 2, we will use the simulator to check the

we will check the settings for using the simulator. operation.

Select the category Debugger and check the On the right side of the figure below, there is also
Setup option. In the Device section,

a Simulator in the category, but there are no extra
options even if you select it.

| Options

Options for node "S2P01 X
X
Categoty:
Faclory Sellings
Category Factory Settings | | e
G Opbon: General Options
enera s
Static Analysis
Static Analysis cle++C
1C++ Compler
C/c++ Compler Gatr
ke [Scwp Joownicsd | kmeges | Multicore | ExtraOptions | Plugins Assembler P
: Output Converter
SUPUECORperfor Driver 4 Run te: Custom Buid
Custom Buid 5 "
——— Simulator v e Buid Actions
= Linker
Linker Setirp macros

[GOBSever | Debugger
GDB Server Oltsemdscofler [-jet GDB Server
Ijet Ijet)
Smuator & Third-Party Driver M There are no tool-specific options that you can set.
TR Device description file Ty e

[Override default

Cancel

Cancel

Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here

41

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

2.4 Understanding the RISC-V project as a 24.1 Creating sample 2
whole

First, take a look at the following simple C
In embedded software, it is not enough to create program. This is a simple program that adds
a C language source program. You need to the values of two arrays, da, and db, to the array
configure the CPU cores in the startup code, ha, subtracts the values of the arrays da and db,
configure the peripheral hardware, and initialize stores them in the array hb, and updates the
the variables. To do this, you also need to create arrays da and db with the result.
a linker configuration file. Here, we will explain the
basics.

#define N (18)
t da[N]={11,12,13,14,15,16,17,18,19,20};
int db[N]={ 1, 2, 3, 4, 5, 6, 7, 8, 9,16};
ha[N];
hb[N];

main(

for (1=@ ; 1 < N ; i++) {

ha[i]=da[i]+db[i];
hb[i]=da[i]-db[i];

}

for (1= ; i < N ; i++) {
da[i]= ha[i];
db[i]= hb[i];

}

return 0;

At this time, the following settings are made
so that only RV32l instructions are used in the
program.

Options for node *P* X Options for node "P* X

Categoly

Library Configuration Library Options 1 Library Options 2

Libeary Cox Library Options 2
Gulpurt Coriter et 1SA Extensions Code Generation Qutput Targe Output
Custom Buid i
Device Base IS4 |
Linker
Buid Actans Rv32] T | Ozicbaz ¥ |
Debugger
GDB Server

et
Smuator

. i Floating-point settings:
Third-Party Driver LiM LA
» m FPU v
On Oc L
Bit manipulatio

Code size reduction Scalar cayptography
Concel

G

m Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here 42

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

24.2 Running sample 2

After doing Make, click Download and Debug. In
the debugger, select the variable da in the editor,
as shown below, right-click, and select “add to
watch.” Do this for the variables db, ha, and hb.
Then, when you arrive at the main function,

you can see that all the variables have been
initialized. Who did this? Other things are
essential to run the program but are not

done in the program. The following content is
implemented in the startup code.

Categosy
General Oplons
Siatic Analyus

C/C 4+ Compaler

Asseemhier
Oustput Corrverter =
Driven

Custom Buid
| Lirier Simulator

Bl dic B Y

>Eup 1

. Cetgaer ™ ¥

=% Cerver L e mad o file
|

If you start debugging again with [Download

and Debug], you can check the operation of

the program immediately after the reset. The
illustration below is illustrated, but an important
point will be added. RISC-V provides a register
called GP (Global Pointer). When accessing the
memory, it can be executed faster than without
such a mechanism by having it calculated at the
offset from the GP value. At this time, you can see
that it is set with two instructions, LUl instruction
and ADDI instruction.

The lui instruction is an instruction that allows
you to set a 20-bit immediate value on the upper

e Arrays da and db need to be initialized with
initial values.

e Arrays ha and hb are zero and need to be
initialized.

e Configuring the Stack Pointer

e Configuring the Global Pointer

e Interrupt vector setting (you don’t have to do it
because you won't use an interrupt this time)

However, with the default settings, the debugger

is running as far as the main function at the start,

S0 you need to change the optional setting to

see the startup code run. As shown in the figure

below, uncheck [Run to] in [Debugger]-[Setup].

Facthon Sefting:

Multicore Extra Options Pluging

oF, Cancel

side of the register. In addition, addi can specify
a 12-bit value immediately. By using these two
instructions, the 32-bit address is set to GP.

With IAR, you can choose between two options:
leave the compiler to initialize variables or let the
user do it in their code. In this case, the linker
configuration file is set to leave the initialization
to the compiler, so the variable initialization is
performed in the function __iar_data_init2. For
details, please refer to the ILINK documentation

[2].

Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here 43

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

__iar_program_start:

_dar_cstart_init_gp:

In the startup code, the global pointer value, the
stack pointer value, and the vector table value
were set. At this time, the method for checking
the address utilized by the startup code will

be explained. The addresses of variables and
functions placed by the linker are listed in the
MAP file. Once the MAP file is made, it will be
displayed under Output on the Workspace
screen. In this case, it is a file called Pmap, so
you can open it in the editor screen by double-

0x2000°0008: 0xB000°'D1b7 Ilui gp, 0x80000 ;

0x2000'000c: 0x0501°B193 addi go, p, 0x50 GP settings (Ox80000050)
0x%2000°0010: 0xf140°2573 csrr al, mhartid

0x2000°0014: 0x8000°1537 lui a0, 0xB000T =

0x2000°0018: 0x0a05°0513 addi al, a0, 0xAD SP settings (0x800010a0)
0x2000°001c: OxffO5'7113 andi sp, a0, -0x10

0x2000°0020: 0x2000°0537 lui a0, 0x20000 :
0x2000°0024: 0x3005°0513 addi a0, a0, 0x300 Vector table settings
0x2000°0028: 0x3055°1073 csry ntvec, al !
0x2000°002c: 0x2100°00ef call20 __low_level _init mweC(OQOOO 0300)
0x2000°0030: 0x0005°0463 beaz a0, 0x2000°0038

0x2000°0034: 0x2100'00ef cal 120 __lar_data_init2 AT ; g
0x2000°0038: 0x0000°0013 nop Call of the initialization routine
0%2000°003c: 0x0000°0513 Yy al, zero

0x%2000°0040: 0x00c0’00ef call20 main : :
0x2000°0044: 0x23c0°00ef call20 exit Call of the main function
0x2000°0048: 0x0000°006F | 0x2000°0048

In the MAP file, where there is an ENTRY

LIST, you can check the placement address

of variables and functions (see the figure
below). $$Base indicates the beginning of the
region, and $$Limit indicates the next address
of the region. For example, in CSTACK, the
0x800000a0 to 0x800010a0 area is defined
as a stack. It is actually used in the area up to
0x800000a0~0x8000109.

L8 s output 291 WINTERRUPTS§Bage

- L—E BP.mep 25 NINTERRPTSSHL e
P out 08000’ 00a0

- 0:2000° 0320
0x2000° 033¢
0x2000° 014
02000’ D108
02000’ 0234

far_copy_init2
0x2000’ 0008

__lar_cstart_init_gp
__lar_data_init2
__lar_default_minterrupt_handler
233 0%2000° 0300

234 __lar_program_start 0x2000° 0004

0x2000'0244_ 0

Ox24

clicking it.
‘Workspace w 8 X | 1AR information Center for RISC.V main.c foo.c Pmap X
Ioam - —
Files o 215 Entry Size Type Area with variable initialization
218 -----= mmemmme ceen ol " 3 —
& @P - Debug v 917 .far.init_table$§Base 0x2000’0320 information .iar.init_table
8 Bfooc 218 .iar.init_table$$Linit 0x2000'033¢
-8 Bmaine 219 CSTACK$$Base 0x8000° 00al
: 220 CSTACK$SLimit

Stack area CSTACK

- Linker created -
- Linker created -
- Linker created -
- Linker created -
_dbg_break.o [2]
—dbg_xxexit.o [2]
copy_init.o [4]

Interrupt handler

235 _iar_gtatic_bame$$GPREL , . A
238) - oxsﬂuo‘uaso} GP pointer when accessing memory
237 __iar_zero_init2 0x2000'033¢ O

238 __low_level_init 0x%2000' 023¢ low_Tever_ -0

239 _exit 0x%2000° 0284 cexit.o [4]

240 abort 0x2000°0124 O0xad Code _dbz_abort.o [2]

241 da 0x3000°0000 0x28 Data nain.o [1

242 db 0x8000°0028 0x28 Data nain.o [1

243 exit 0x2000°02380 0x8 Code exit.o [4

244 ha 0x8000'0050 0x28 Data nain.o [1

245 hb 0x8000°0078 0x28 Data nain.o [I

246 main 0x2000°004¢ 0xed Code nain.o [1

Now__iar_static_base, let’s take a look at
$$GPREL as there are things to confirm. In
order to access memory using a global pointer,
EWRISCV needs it to be specified in the linker
configuration file. The specific specification is
shown in the figure below. To briefly describe
the linker configuration file, define the memory
area to be used in the “define region.” Here, we

Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here

have defined the RAM and ROM area. What is
important is the definition of the block RW_DATA
on line 38. In this block, the data of the read-
write attribute is placed, but here, it is specified
that it is accessed relative to GP because it is
with static base GPREL. This RW_DATA is placed
in the memory area RAM_region32. For more
information on ILINK, see Reference [6].

44

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

IAR Information Center for RISC-V main.c Pmap Pout genericicf x _ dbg_break.c [RO]

C=Y ilink configuration file.

build for rom:

define exported symbol _link_file_version_2 = 1;
keep gymbol __iar_ cstart init_sp: “// defined in cstartup.s

define memory mem with gize = 4G

e €0 00 e £ 60 00~ O9 €5 o £ 0

ket et s

3B}
7

If you create software without being aware of
assembler instructions on a daily basis, you

may not be able to understand the GP relative.
Here, how are C variables accessed GP-relative?
Consider the case where you don't use GP
relative.

In the previous program, we extracted the part
implemented in GP relative. The value set for GP
is __iar_static_base 0x80000058 denoted by
$$GPREL. On the other hand, the variable ha is

In order to access the variable ha or the variable
hb, this address must be set in a register.

Placement and size of variables

Let’s see what happens if we don't use GP
relative. In order not to use GP relative, it is
necessary to change the linker settings. By
default, the linker settings of IAR were set to use
GP relative, as shown in the upper part of the
figure below. Until now, the data to be accessed

define region RAM region32 = mem:[from 0x30000000 to 0x8003FFFF]:
define region ROM_region32 = mem:(from 0:20000000 to Ox3FFFFFFF];

Place data with readwrite attribute in block RW_DATA.
Declare that it will be placed using GPREL (GP relative).

Place block RW_DATA, heap and stack in RAM area.
The heap was eventually removed since it was not used.

0x80000054, and the variable hb is x8000007C.

// The part where hal[i] is assigned in ha[i]=da[i]+dbli];

Subtracting -4 from GP becomes the start address of
addi a2, gp,-4 ha

[Liar_static_base$$GPREL 0x80000058
ta 0x8000'0000
b O0x8000'0028 slli - a3,a0, 2
ha 0x8000'0054
hb OX8000007C add a2 a2 a3
0

SW al, 0(a2)

} Write the operation result to address a2.

f'.v‘///.-’f////f/////f///////////.fr’///'f////f.v’///’/f//////f'/f’/f////ff/////////
//

Define RAM area from 0x80000000 to

Ox8003FFFF

gg define block|RY_DATA Iwith gtatic base GPREL | rw data|};]
ﬁl “CSTARTUP32” ! place at start of ROM_region32 { ro section ,cstartup };
42 "ROM32"!place in ROM_region3g { ro,
12 block WINTERRUPTS }3
45 "RAM32":place in|RAM_region32
18 (RA_resion? | e
47 block CSTACK }3
43
24.3 About GP relative

To set a 32-bit address in a register, for example,
you can execute a combination of LUl and ADDI
instructions. However, if you set it every time you
access a variable, the code size will increase, and
the execution time will be slow.

GP relative is a method of calculating the address
of the memory access starting from the address
in GP. In the figure below, in order to write hali],
the value of the GP register is first copied to
register a2, the value of index ix4 (because it

is an int type) is added to a2, and the value is
written with the sw instruction. Where the index

is multiplied by 4, it is implemented by shifting to
the left.

Since a0 has the index of the array, use x4 to calculate
the size of int type

Add the value of index x4 to the first address of a2,
calculate the address of hali], and store it in a2

relative to GP (in this case, the read-write data
attribute data) was stored in a block RW_DATA,
and the block was placed in the RAM_region32.
In order to avoid using GP relative, we stopped
defining block RW_DATA and placed rw data in
the RAM_region32 as it is.

Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here 45

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

'RAM32":place in RAM_region32
block HEAP,
block CSTACK };

define block RW_DATA with static base GPREL {rwdata },

{ block RW_DATA,

¥

"RAM32" place in RAM_region32 {rw data,
block HEAP,

block CSTACK},

// define block RW_DATA with static base GPREL {rwdata}, /A F P+

If you leave it as it is, you will get an error in the
startup code. In addition, the part where the GP is

configured is commented out in the startup code
(cstartup. s).

As aresult, the generated code has changed as
follows: It is supposed to use the lui instruction
and addi to set the address. The point is that the
number of instructions when executing the same

da Ox80000000
db 0x80000028 lui a3, 0x80000
: addi a3, a3, Oxb0
ha 0x8000'0050 prliie. vy
hb 0x8000'0078 add a2 a3 a2
SW al, 0(@2)

Let’'s examine the output instruction sequence
with and without GP relative. It is clear that the
part that sets the variable’s address is GP relative,

// Write hali]=dali]+dbli]; to ha (retains the result added to al)

Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here

1398 FUBLIV __1ar_c8Tart_1nit_gp

137 __iar_cstart_init_gp:

138 efi PRET Undefined

139 EXTERN __iar_static_base$$GFREL

140 .option push

141 .option noretax

142 i3 lul zp, #hi(iar_static_base$$GPREL)
143 i3 addi gp, ep, %lol " iar static base$$GPREL)
144 la zp, jar static base$TGPREL
145 .0ption pop

Hg REQUIRE 7estart_init_sp

148 CfiEnd 1]

148

process is different when GP relative and this GP
relative are not used. In many cases, using GP
relative produces shorter code. Shorter code is
generated, which also results in faster execution.

Array ha is 0x8000 0050, so set a2 with Iui and addi
instructions

Since the array is of int type, 4 times the index is

required, and the access address is calculated as
a2=a2+s3.

Write the operation result al to the address held by a2

which can be done with one instruction. However,
if GP relative is not used, two instructions, lui
instruction, and addi instruction, are required.

46

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

With GP relative Without GP relative
reference reference
“ lui a3, 0x80000

addi a2 ,gp,-4 addi a3, a3, Oxb0

slli a3,a0, 2 slli a2,a0,2

add a2 a2, a3 add a2,a3, a2

SW al, O(a2) SW al, O(a2)
In summary, GP relative is an important feature to define a block with a static base GPREL in the
of using RISC-V, and it may result in a smaller linker configuration and place the block with a
code size and faster execution speed. In order to static base.

generate GP-relative code in EWRISCV, you need

m Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here 47

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

2.5 C extension instructions

The basic instruction of RISC-V is a 32-bit
instruction. However, this C extension provides
16-bit instructions. As a result, the program’s

code size can be reduced, so the limited FLASH
(ROM) area can be used effectively. Let’s see how

much of a difference it actually makes.

Let’s compare the results. It affects the
code memory and the read-only data in the
arrangement. In terms of code, 704 bytes

The project created previously in 2.4 used the
RV32l instruction set. This time, an attempt will
be made to enable the use of the C extension
instruction as well. In the project options, check
[C] in [General Options]-[Target]-[Standard
Extensions].

Since the amount of memory that can be used
in embedded systems is smaller than that
of personal computers, C expansion is very

have been drastically reduced to 472 bytes. effective.
RV32I RV32I+C

readonly code 708 476
memory
readonly data 108 112
memory
readwrite data 4,300 4,344
memory

Let’s use a different example. The following code
is a function that adds eight arguments and
changes the result.

int hoo(int a, int b,

int () ‘ant d, inkt e, int f, int g, nb h)

return a+b+c+d+e+fi+g+h;

This is the left of the figure below when it is
compiled with RV32I, and the right figure below
when it is compiled with RV32I + C.

Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here 48

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Extended instructions are prefixed with c., so
addition becomes c.add instructions. On the
RV32I, the add instruction specified the operation
with three operands, but the c.add instruction is
now 16 bits, so it can only take two operands. The
first operand is both the register that defines the

RV32I

hoo:

Ox00b50533 add a0, al, al

Ox00cb0533 add a0, a0, a2
0x00db0533 add a0,a0, a3
Ox00eb0533 add a0,a0, ad
Ox00f50533 add a0,a0, ab

0Ox01050533 add a0, a0, ab
OxON50633 add a0, a0, ar

Ox00008067 ret

Machine code

There is a possibility of reducing the code size
by using C extension instructions (Compress).
Not all instructions have extended instructions.
If you are coding this Compress instruction
manually, the important point is to “use or not
to use,” but for those who use C or C++, you

Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here

result and is also the input. Suppose you write the
instruction c.add a0 alin mathematical terms,
a0=a0+al. If you check the machine language in
the figure below, you can see that the RV32| is 32
bits (8 hexadecimal digits), but the C extension is
16 bits (4 hexadecimal digits).

Rv32I+C

hoo:

Ox952e cadd a0, al
0Ox9532 cadd a0, a2
Ox9536 cadd a0,a3
0Ox953a cadd a0, ad
Ox953e cadd a0,ab
0Ox9542 c.add a0, ab
Ox9546 cadd aO0,ar
px8082 c.ret

Machine code

can switch with the compiler option. In order to
make effective use of FLASH (ROM), which is
limited in embedded systems, we would like you
to consider using it on the premise that it will be
used.

49

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

2.6 M Extension instructions

The M extension instruction allows you to perform code generated with and without the M extension

integer multiplication and division. If there is instruction will look like.

no M extension, multiplication and division will

be performed by software. Looking only at the 26.1 Creating sample 3

C/C++ level, wouldn’t it be good if it could be

executed? You might think. So, the focus now is Now, let’s look at the generated code for the

to look at the actual code here and see what the following program. In this project, we will first use
only the RV32I.

t main() {

c = a*b;
di="a/b;

return @;

In this case, we are using multiplication (*) and are configured for RV32l. There are no hardware
division (/) in the program. In this project, settings multiplication or division instructions.

Options for node P X

Category.

Static Analysis

v
C/C++ Compier
Assembler
Output Converter
Custom Buid
Linkes

Buid Actons
Debugger

GDB Server
et

Smudator

CIC++ Compiler
Assembler
Output Converter | Target Code Generation Output

Library Opti
Con

ibrary Gptions 1 Library Options 2

Custom Buid

Third-Party Driver

Caeal el

In the figure below, the variables and functions division are implemented. On the right side of the
related to this time from the map file on the left figure below, the generated code for the part to
have been extracted. __iar_imul to calculate be multiplied and divided is included.

multiplication and __iar_idivmod to calculate

m Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here 50

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Placement and size of
variables and functions

Generated code

_iar_imul Ox2000'01fc /lc=a"; GP-8 becomes the address of variable a and loads from there
_iar_idivmod 0x2000'0048 Iw a0, -8(gp)
_iar_static_base$$GPREL lw 81, _4(g p) GP-4 becomes the address of variable b and loads from there
Ox8000'0008 jal 10, _iar_imul Muttiplication is performed using a function called _iar_imul
a Ox8000'0000 0Ox4 SW a0, O(@gp) Since the calculation result is in a0, GP+0 becomes variable ¢
b Ox8000'0004 Ox4 and the value is written there
o Ox8000'0008 0x4 /I d =alb; GP-8 becomes the address of variable a and loads from there
d 0x8000'000c Ox4 w a0,-8(gp) peerremmm—" T T T
Iw al, -4(ap) : ——
jal TO, _iar_idivmod . Perform division using a function called _iar_idivmod
SW a0, 4(gp)

Since the calculation result is in a0, GP+4 becomes variable d,

and the value is written there

Make a note of the code size at this time.

820 bytes of readonly

code memory
32 bytes of readonly data memory

4'236 bytes of readwrite data memory

26.2 Enabling M extension instructions

Now, let’s try to enable the M extension
instruction. Set the options as follows:

Options fer node P2 x Options for node “P~ x
Catagoiy: | Categos:
corenootos |
Static Analyss Statc Analysis
CJC++ Compller CfC++ Complier
i figura L z ibrary Copfigurati Library 51 ibrary O 2
Nsokabdar Libeary Configuration Library Options 1 Libeary Options 2 | N Library Co rary Option: Library Options
Output Converter . Target ISA Extensions Code Generation Output 3 11| ot Convverter /_ Target i ISA Extensigns Code Cmgjt
" / : Cusston Build
o ol { Device Base 5 7 f Cache management
Liriker Lirker S
Bulid Actons RV32 B Busld Actione Dificboyr [Zickop [JZicboz [gwwincache
Debugger i cxl Debugger
i y GDB Server Andes extensians osp
’s"‘" Standard extensions ::;w [0 ¥endespert ® tlone
riatoe Floating-point settings: Q =ds

Thed-Party Driver ‘E_\;‘. Oa aling-point sciting: ThirdPorky Ciiver CobDense (O Xandesdsp

Oy DOc¢ By X; pelerse Oe

Bit manipulation b /

e
Ozee Ozes Clzee CZts ¥
Code size reduction Scaler cryptography
Ozkn
Ozks
= o s

The generated code should look like this: The
map file on the right side of the figure below

function. In the generated code on the right of
does not have a software multiplication/division

the figure below, you can see that the mul and div
instructions of the M extension are used.

Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here

51

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Placement and size of variables

; Generated code
and functions

f e=a"b;
Iw a0 -8 (g D) GP-8 becomes the address of variable a and loads from there
iar_static b888$$GPREL Iw al r_4(gp) GP-4 becomes the address of variable b and loads from there
- - 0x8000'0008 mul aO, 80, al Execute multiplication instruction mul
a Ox8000'0000 0x4 SW a0, O(gp) Since the calculation result is in a0, GP+0 becomes variable ¢
b 0x8000'0004 Ox4 and the value is written there
; /M d=alb;
3 gxgggg'?)ggB 8)(3: W a'o 8 (g D) GP-8 becomes the address of variable a and loads from there
X] X) T =
Iw al - 4(9 p) GP-4 becomes the address of variable b and loads from there
div aé a0. al Execute division instruction div
SW a0, 4(gp) Since the calculation result is in a0, GP+4 becomes variable d
and the value is written there

Looking at the code size at this time, it was as

follows.
500 bytes of readonly code memory
32 bytes of readonly data memory

4'168 bytes of readwrite data memory
Only the code memory is different with the M When the execution cycle was examined at this
extension. 820 bytes equals 500 bytes, which time, the following was discovered. The execution
makes the code size about 60%. However, it is cycle fluctuates depending on the data, so it’s
not always 60%. It means that the number of good to look at this example as a reference, but
libraries executed by the software has increased the multiplication and division performed by
by about 300 bytes, so the impact will be smaller hardware can be performed at high speed.

for large-scale software.

RV32I RV32I+M
c=a'b; 24 4
d = a/b; 59 4

m Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here 52

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

26.3 RV32ZM

The extended instructions on the RV32M are
as follows. | will also explain how to name the
instructions at this time. MUL, DIV, and REM are
the multiplication, division, and extras of basic
32-bit instructions. In multiplication, 32-bit and
32-bit results take 64-bit values. The instruction
MULL stores the result of the upper 32 bits.

At this time, it is necessary to use MULH,
MULHSU, and MULHU, depending on the value
of the source register signed or unsigned. In
the case of MULH, the two sources are signed,
in the case of MULHU, the two sources are
unsigned, and in MULHSU, rs1is signed and rs2
is unsigned.

MUL rd,rs1,rs2

MULH rd,rs1,rs2

MULHSU rd,rs1,rs2

MULHU rd,rs1,rs2

DIV rd,rs1,rs2

DIVU rd,rs1,rs2

REM rd,rs1,rs2

REMU rd,rs1,rs2

m Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here 53

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

2.7 A extension instructions

Instructions preceded by AMO perform Read-
Modify-Write. AMO is an abbreviation for atomic
memory operation. For example, AMOOR. W

rd, rs2, (rs1) performs the following actions
inseparably:

The RV32A's atomic instructions are the following.
These are required when multiple processes are
running simultaneously. Typically, in a multitasking
environment with an operating system (including
RTOS), various tasks are used to access shared

data correctly. When the OS is not used, it is
generally used to manipulate shared data in

1.

Read the value from the memory address
indicated by 1.rs1

interrupt processing. 2. OR with the value read from memory and the
o AMOSWAPW rd, rs2,(rs1) register value of rs2
AMOADDMW rd, rs2,(rs1) 3. Atthe same time as writing the result of the

AMOXORMW rd, rs2,(rs1)
AMOANDMW rd, rs2,(rs1)
AMOORMW rd, rs2,(rs1)
AMOMIN.W rd, rs2,(rs1)
AMOMAXMW rd, rs2,(rs1)
AMOMINUMW rd, rs2,(rs1)
AMOMAXUMW rd, rs2,(rs1)
LRW rd, (rs1)

SCW rd,rsl,(rs2)

OR to memory, the value of rs2 is stored
in register rd. LR. W and SCW are Load-
Reserved and Store-Conditional instructions.

LR.w rd, (rs1) Reads the memory value that
is rs1and stores it in register rd. Record the
reservation for that memory.
SC.wrd,rs2,(rs1) If there is a reservation

for the address indicated by rs1, write the

contents of rs2, and if the store is successful,
the value of rd is set to zero. Otherwise, it
writes a non-zero error code.

The following examples of how to use the Load-
Reserved and Store-Conditional instructions are
shown in the specification.

a@ holds address of memory location
al holds expected value
a2 holds desired value

a0 holds return value, @ if successful, !@ otherwise

lr.w t@, (a@) # Load original value.

bne t@, al, fail # Doesn’t match, so fail.

sc.w t@, a2, (a@) # Try to update.

bnez t@, cas # Retry if store-conditional failed.
1i a@, @ # Set return to success.

jr ra # Return.

1li a@, 1 # Set return to failure.

jr ra # Return.

Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here 54

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

2.71 Creating sample 4 with A extension instructions

A extension instructions are not generated from
code written in C/C++ language. It must be
written using assembler instructions or an inline
assembler. Let’s actually look at a sample that

The C language and assembler programs are
shown below. Let’s start with the C code on

the left. The fact that the @ 0x80000000 is
appended to the declaration of the variable d2
is an extension of IAR. This function places the
address of the number after @ in the variable.
This places the variable d2 in the 0x80000000.
Inside the main function, we are calling function
fO01, but the function fO01 is defined in the
assembler.

Let’s take a look at the assembler code on

the right. Many people have not seen many
assembler programs, so that will be explained
in detail here. In assembler, the items described
from the first column are described as labels.
Iltems other than labels should be listed in the
second column or later. In this assembler file,

Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here

calls assembler from C and runs the AMOADD
instruction in the assembler.

Set the following to enable the use of the A
extension in the project options.

only the fifth ling, fO01, is listed in the first column.
In assembler, both variables and functions are
labeled with names, so keep this in mind. Then,
in the second line, public fOOT1, the label fO01 can
be referenced from an external file. If this public
definition is not present, it will be accessed only
by file.

In the fourth line, the section is set to place the
object to be described from here. The section
name is “text” and the memory type is CODE.
There are three types of memory: CODE, CONST,
and DATA. They mean codes, constants, and
variables, respectively. The NOROOT after itis an
instruction that if this part is not needed, it can
be deleted. If you want to keep functions that you
don't use, use the keyword ROOT. The last (2) is
aligned with 2 bytes.

55

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

main.c - testS x
main{) iy
1 #include <stdio.h> 1
2 2 publie £001
3 extern void fool(): 3
4 4 SECTION .text” :CODE:NOROOT(Z)
5 int d2 @ 0xE0000000; 5 fo0l:
B B lui t0, 0x30000;
7 int nain{ void ;) 7 addi t0,t0, 0=000:
8 int t; 8 addi t1, zero, Ox001;
3 t=E001¢] 3 §
10 printf{7d2=¥d, ret=Nd¥n", d2.t); 10 amoadd.w a0, t1,(t0)
1 t=F001(); 11 ret
12 printf("de=¥d, ret=¥d¥n", dZ.t): 12
13 return 0: 13
14|} 14 END
15 15
From line 6 onwards, it is the part that is also that the assembler file will result in an error if
programmed using assembler instructions. This there is no END at the end.

explanation is attached to the figure below. Note

foOT:
M0, B0, } Set register t0 to 08000 0000
addi t0,10, Ox000;
addi t1, zero, Ox00T; Set 0x001 to register t1 (zero+0x001)

Store the value of address 10 in a0, and write
the result of that value + t1 back to address

amoadd.w a0,t1,(t0)

10

ret Return from function fO01, retum value is in
a0

END

The result of the terminal 1/0 that will be executed
is also attached. You can see that amoadd
returns the value before the change.

main.c X w | Terminal I/O v QX
main() fo|| outpu Log fie: Off
[% Binclude <stdio.h> 40=1, reizn
i extern void fooll): d2=2, ret=l
g int d2 @ [x200000003
78 int main(void) {
8 in }
g t=£0010)5 .
10 primtf('d2=Hd, ret=Nd¥n", d2,t);
11 t=f001()3
12 printf("d2=Kd, ret=Xd¥n", d2,t):
13 | return 0;
14 }
18 .
Iriput: Ltrl codes Options..
. . Buffer size: 0

m Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here 56

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

2.8 N extension instructions

As explained previously in the 1.4.5 operating and exceptions at the user level. CSR has been
mode, interrupts cannot be received in user extended, and instructions have been added for
mode. This N extension enforces interrupts interrupting at the user level.

The following are the enhancements of CSR.

CSR address Name memo

0x000 ustatus User Status Register

0x004 uie User level interrupt enable register
0x005 utvec User interrupt handler base address
0x040 uscratch Scratch register for user interrupts
0x041 uepc user interrupt PC

0x042 ucause User exception cause

0x043 utval User trap value register

0x044 uip User interrupt pending register

The following instructions are added as additional
instructions: This is an instruction to return from
an interrupt at the user level.

e uret

m Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here 57

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

2.9 Custom instructions

a mechanism for managing custom instructions,
which will be introduced here.

291 0pening the IAR information center examples

From the EWRISCV screen, open [Help]—
[Information Center]. The Information Center
provides a wide range of information, including a
sample project. Now, select Example Projects.

© 4R Ernbedded Workbench IDE

File Edit View Projet Tools 'Mnd

NN ES - %} Content. k
Workspace + 0 X | AR info Index...

Seanch...
Fil=z o Product updates

Release notes

IDE Project Management and Building Guide
C/C= = Dewclopment Guide

Asgembler User Guids

C-5PY Debugging Guide

C-STAT Static Analytis Guide

Debug Probes Wier Guide

IAR on the Web

&£ License Manager.

T

Ab gt

Then, the screen will change, select [Simulator],
and then select [Open Project] under [Custom
Instructions]. You will then be asked which folder

EXAMPLE PROJECTS

) Anses

1 €J canaan Hendryis R340
£ cednipise
j Edwin

) iP5 EMEAS Bravo Ayl

&) gua0evise GOIIVEIIIV-EVAL

1 £ weusces

RISC-V is characterized by modular configuration
and custom instructions . EWRISCV incorporates

enter for RISC-V

sy, BT DI, U

Prosust axplore

Hardware sclutiens Buppon Rslesse notes My pages

to store, so please specify it. This will open the
project.

IAR Information Center for

Samukator

Simulator

infs Cpan Nams Dwieriptian
RBrajece

Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here 58

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

29.2 RISC-V operation codes

RISC-V allows custom instructions. However,
the following operation codes are determined.
In this example, we are using Reserved space.

This was created with reference to [6], and while
it has not been modified, if it were to be actually
made, it might be advisable to utilize the sections
described as custom-0 / custom-1/ custom-2 /
custom-3.

inst[4:2] 000 001 010 011 100 101 110 111

inst[6:5]) (> 32b)
00| LOAD LOAD-FP | custom-0 | MISC-MEM | OP-IMM | AUIPC OP-IMM-32 48b
01 | STORE | STORE-FP | custom-1 AMO OP LUI OP-32 64b
10| MADD MSUB NMSUB NMADD OP-FP | reserved | custom-2/Tvi28 48b

[11 | BRANCH JALR reserved JAL SYSTEM | reserved | custom-3/Tvi28 | = 80b

Table 24.1: RISC-V base opcode map,|inst[1:0]=11

Before you can create custom instructions, you e S-type: Instruction type that specifies how to
need to understand the six instruction types write (store) to memory, etc.
in RISC-V. Depending on the instruction, an ¢ Type B: An instruction type that specifies two
immediate value may be specified, or a register registers, such as a conditional branch
may be specified, and the number of registers is e U type: Instruction type that handles 20-bit
different for each. immediate values
¢ Rtype: Aninstruction type that specifies two e Jtype: Instruction type used for unconditional
register inputs and one register output, such jumping, etc.
as R=R+R
¢ ltype: Aninstruction type that specifies one
register input, an immediate value, and one
register output, such as R=R+l.
31 27 26 2% 24 20 19 15 14 12 11 7 6 0
funct? | 1s2 rsl funct3 rd opcode R-type
imm|11:0] sl tunct3 rd opcode I-type
imm|11:5] rs2 rsl funect3 imm|[4:0] opcode S-type
imm[12]10:5] rs2 rsl funet3 | imm[4:1|11] opcode B-type
imm|31:12] rd opcode U-type
imm|[20]10:1|11]19:12] rd opcode J-type
293 Custom instruction

Now, in the sample based on reference [6],

we implement the integer mod operation
(remainder). Let’s decide on the custom
instruction at that time. The mod arithmetic
instruction is of the form R = R%R, soitisan R
type. For R-type instructions, it is necessary to

Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here

determine inst (the part described as an opcode),
funct3, and funct?. For rd, rs1, and rs2, specify

the register number in the same way as other R
instructions.

¢ The value of inst[6:0] is 1101011 (Ox6B) in binary.
¢ The value of funct3 is 000 (0xO0) in binary.

¢ The value of funct7 is 0010000 (0x10) in binary.

59

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

294 Using custom instructions in code

In EWRISCYV, it is possible to write inline
assembler code that corresponds to custom
instructions. Please refer to the manual for
details, but here, let’s check the implementation

I’m using an inline assembler to use custom
instructions in C. .inst r is an R-type instruction,

int modulo(int a, int b) {

int r;
__asm(".insn r @x6B, 9x0,0x10,
return r;

i

If you look at the actual build result with this, it
will be as follows. The instructions in question
are implemented in 32-bit instructions and

The analysis of the 0x20b5056b machine
language is as follows. In machine language, it
is specified by the register name, so rs1is x10

of the mod operation instruction decided in 2.9.3.

%0,%L,%2": "=r"(r)

followed by the values of inst, funct3, and funct7
as 0x6B, 0x0, 0x10, and then the registers. %0 is
the destination and %1 and %2 are the sources.
Behind that, we are mapping variables with
%0,%1,%2. For %0, %1, and %2, the compiler
allocates them to the appropriate registers, which
is a convenient notation when using an inline
assemblerin C.

: "rt(a), "r(b));

are 0x20b5056b. Unfortunately, for custom
instructions, the EWRISCV disassembler display
is Unknown32.

and rs2 is x11. If you write the ABI name, rslis a0,
and rs2is al. AO and Al are the first and second
arguments of the function.

31 27 26 25 24 15 14 12 11 7 6 0
R | funct? | rs2 rsl | funct3 | rd I Opcode I
« 0010000 RS2 RS1 000 RD 1101011
Y- Nt
Ox20b5056b|:f> 0010000 o101 01010 000 01010 1o1oNn
xii(al) x10(a0) x10(a0)

Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here 60

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

295 Using custom instructions in the simulator

The EWRISCV simulator is not capable of
executing custom instructions. But this project
can be executed properly. In fact, we have a
breakpoint at the address where we put the
custom instruction, and we have a macro function
that executes when the breakpoint is reached.

i 1 155 @ Custonlnet_mod() {
e 156 __var addr}
157 __var nm_rgl;
a t 158 _var mm_rs2;
159 __var nua_rd:
[L 160 __var dat_rsl;
i 1B1 __var dat_re2;
ig " Edit Breakpoint x fg% “var dat _rd;
fist e = 184 addr = §FC;
{g :;% E:Zigemj"ﬁ ® Code 185 Inst = __readdemory32(addr, "Wemory");
i 186
}g int g5t Skt Ig’g __mesgage " ----- *y BBC:¥M, "====", Inmt:¥x;
20 @ int wain(void Emain.ci.11.] it. ! .
* 06 uaamCymany (I Bt 169 | nun_reg = (Inst »> 20)a 0¢1F;
28 printf("%d 8% %&d Size 170 nu_rel = (Inst »> 15)& 0xIF;
2 7 return (; @ Auto {;é n_rd = (Inst >> 7)& DxlIF;
25 O Manual Igg __message "ESZ,RE1.RD=", nun_re2, © 7, num_rsl, © ", num_rd;
1
Action 175 dat_rsl = SelectRez¥alue(num_rsl);
LT 178 dat_ra2 = SelectRegValue(num_rs2);
Expression: 177
173 __message F51=", dat_rsli
Canditions i’gg __message » dat_rsg;
Expression: 131 dat_rd = dat_rsl ¥ dat_rsZ; .
Custominst mod() :g% WriteRegValue(num_rd, dat_rd):
= - — 184 __message "RD=", dat_rd, * rezmm”, num_rd;
@ Condition true Skip count: o 135
(O Condition ¢! d S 186 /% STEP PC to nest instruction */
) Condition changed }gg HPC = HPC + Oxd;
129 /% Return FALSE, so that execution will contimue ¥/
TN returs 0;

Here, we will introduce only a part, so if
necessary, please check it while actually running
the sample with EWRISCV. A breakpoint is set,
and the macro function Customlinst_mod is
executed when it is set. In this macro function,

registers rd, rs1, and rs2 are analyzed to simulate
MOD operations. Also, when this macro function
is executed, PC=PC+4. This makes it possible
for the simulator to execute custom instructions
without knowing them.

Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here 61

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

2.10 About function calls/ABls
210.1 C language functions
Let’s take a look at what kind of RISC-V

instructions are used when calling and returning
from C functions.

The following is the output assembler instruction.

Here, the optimization is compiled on low. To
call the function add1 from the function foo, we
are calling call add1. In fact, there is no call in the
RISC-V instruction explained earlier. The call is

ax18(gp)
a@, 1

ex18(gp)

sp, sp, -oxle

ra, exC(sp)
add1
ra, @xC(sp)

sp, sp, éx1e

a pseudo-instruction for the JAL raimm. ret is

a pseudo-instruction of jalr xO, O(x1) and is the
return instruction from the function. x0 is the zero
register, and x1 is the ra (return address).

Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here 62

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

210.2 Rules for calling functions

Here, we will use the RV32l as an example to
explain the ABI. First, we will classify the registers
into three categories.

1. Scratch registers tO~t6, ft0O~ft11, a0~a7,
faO~fa7

2. Storage registers sO~s11 and fsO~fs11,

3. Application-specific registers SP/x2, GP/x3,
RA/x1

The scratch register is a function call, and its
value can be changed within the function to
become an OK register. On the other hand, if you
want to change the value of a save registerin a
function, you must save it programmatically and
return it when the function ends. The special-
purpose registers are the stack pointer sp, the

global pointer gp (used for variable access), and
the return register ra, which holds the function’s
return value.

Now, let’s take a look at what happens when the
function is called. Integer values and pointer
values are passed using registers aO~av. If it is
missing, use the stack. The return value on the
RV32l is a0. For 64-bit data, use a0 and al to
return.

Now, let’s see how the function call is realized.
The following function has 12 arguments of

type int. Up to 8 arguments can be passed, so
four are passed in a stack. The following is the
generated assembler code, but at the beginning
of the function, we use the Iw instruction to load
the values of four variables into the temporary
register via the stack. The other eight variables
are passed in the aO~a7 registers.

Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here

63

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

2.11 About the output of EWRISC-V

At the conclusion of this chapter, a summary
of EWRISCV's output will be provided. The
output destination folder is specified in [General

Options]-[Output] of the project options.

Options for node "ProjectS2P1” X
Categary:
General Options
Static Analysis
C/C++ Compiler - - -
Rbdaabler Library Configuration Library Options 1 Library Options 2
Output Convertar Target ISA Extensions Code Generation Cutput
Custom Build
L UL o Cutput file
neer o 0 "
Build Actions (®)Executable i) Library
Debugger "
GOB Server Output directonies
G
1et Executables/libraries:
Sirmilator Debug¥Exe
Third-Party Drivier =
Object files:
Debug¥0by
List files:
Debug¥list
Browse files:
Debug¥Browselnfo
Buile files:
Debug¥
(1[S Cancel
2113 List files

2111 Executables/libraries

In the folder where Executables/Libraries is
specified, an ELF format executable format or
LIBRARY is generated. It will also be output here
when the HEX/SREC format is output with Output

Converter.

211.2 Object files

The .o file that results from compiling the C/C++

file is output to this Object Files folder.

MAP files and LIST files that can be generated at
compile time are output to this List Files folder.

If you generate assembiler files during C/C++
compilation, they will also be generated in this
folder.

2114 Browse files

EWRISCV has a source code input support
function. For example, it suggests the members
of a structure or completes functions and
variables while typing. You will see the following
choices: The information is currently stored in this
folder.

Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here 64

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

int main{ void)

rintf]

printf("Hello Yorld¥n™);:

Ty snprintf
Ty sprintf|
Tiy vprintf
Ty vsnprintf

(L=l W Bl LU

int
B, _Winkt
Ty main{)

fiy printf{zonst char =

%]

fiy vsprintf{char *rest

nt oA
ar *restric g
Tes a_lis il
C Va_list il
Nt w

This source code analysis function can be turned
on and off. If it takes a lot of time to analyze

the source code, EWRSIC-V may be stopped.

At that time, it is possible to find the cause by

e W - AR Embedded Workbench IDE - RISC-V 3.30,1

File Edit View Project Simulator|| Tools ||Window Help

DORS & e

Workspace > X% |4 Filename Extensions...
|Debug Configure Viewers..,
Files o Configure Custom Argument Variables...
e @P - Debug v ‘& | Configure Tools...
B mainc -
L Rtosts Open in VS Code
New Tool
o[ool .
10 printf(’ fd, ret=Ndin”, d2,t);
11 t=f001() .
12 printf (" , ret=Hdin”, 42,t);
13 return 03
14
15
16
in
2115 MAP files

Here is a brief description of the MAP file
generated by EWRISCV. Some of the output may
increase or decrease depending on options and
code, but the basic part will be explained. The

basic parts are the following eight parts.

temporarily stopping the analysis function. You
can open the IDE options with [Tools]-[Options]
and control them with [Project]-[Generate Browse
Information].

it

IDE Options.

Colors and Fents

Key Bindings

Language Stop build operation on: Never v
4)- Editor Save gditor windaws before building: m -
Always
Messages
Troubleshooting Save workspace and projects before building: | Always ~
:
; nal Analyzers
b Make before debugging: Always w
Source Code Control
Debugger
99 [Reload last workspace at startup
(A Play sound after build operations
| [Generate browse information Browse processes: |4

[Ne source browser and build status updates when the IDE is not the foreground process
[Enable project connections

[Enable parallel build Processes: |4

Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here

LINKER Configuration OPTION
RUNTIME MODEL ATTRIBUTES
HEAP SELECTION
PLACEMENT SUMMARY

INIT TABLE

STACK USAGE

MODULE SUMMARY

ENTRY LIST

The MAP generated in sample 2 will be explained.

65

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

MAP: Linker Configuration Options

At the top of the MAP file, you will find the linker
(ILINK) options. Since EWRISCV is often used in
an integrated development environment (IDE),
it is necessary to open the screen to check the
options, but it is also possible to do it with this
MAP.

TAR ELF Linker V3.2¢ 52 /W64 for

v 38/Aug/2023 ©9:10:27

Copyright 2019-2023 IAR Systems AB.

#

OQutput file =
C:\Users\EWRISCV\Documents\WB\Output\Samples\52P82\Debug\Exe\P.o

Map file =
C:\Users\EWRISCV\Documents\WB\Output\Samples\S2P82\Debug\List\P.

Command line =

--config def CSTACK SIZE

--no_out_extension -o

B\Output
--entry iar program start --vfe --enable stack

text_out

locale --debug 1lib --core=Rv32I)

=
FHEHBREEREREE R ERRRRERERRRRRRRERREREHHEHEREE R
T

m Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here 66

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

MAP:RUNTIME MODEL ATTRIBUTES

In EWRISCYV, we link the runtime libraries, but we
record the options and versions at that time. In
the following, DLib is used for __SystemLibrary, so
the standard library of EWRISCV is specified, but
users can also include their libraries.

Rk REE

*#% RUNTIME MODEL ATTRIBUTES
Fkok

_ SystemLibrary

_ dlib file descriptor

_ dlib version
__diar_optimize_for_size
__dar riscv atomic
__dar_riscv_base isa

__dar riscv compact
__dar_riscv_div

__dar riscv enum size
__dar_riscv_extension_atomic
__dar_riscv_extension_div

__iar_riscv_extension_mul

__iar_rlscv_%pd none

__dar_riscv i version 2.0
__dar_riscv_mul &
__dar riscv xbcountzeroes *
__dar_riscv xlen 32

®
_dar riscv zbb

riscv_zbce

__iar riscv zbt

__rt_version|

MAP:HEAP SELECTION

EWRISCYV allows you to choose the algorithm to
be used on the heap. This is also output to MAP
so that you can understand which library was
used when linking.

EEEETT]

#*%* HEAP SELECTION

LS

The basic heap was selected because --advanced heap

was not specified, and the application did not appear to

be primarily optimized

m Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here 67

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

MAP:PLACEMENT SUMMARY

THE PLACEMENT SUMMARY CONTAINS
INFORMATION ABOUT THE PLACEMENT

OF SECTIONS, BLOCKS, AND SO ON The
PLACEMENT SUMMARY contains information
about the placement of sections, blocks, and

so on. The first half contains information about
the linker configuration file, and the second half
contains information about the placement of
sections.

First of all, the information about the linker
configuration file in the first half, such as block
information, placement information, initialization
information, etc. Block information is defined

as a group that specifies the size or groups of
sections. For example, a block called MVECTOR
defines a block (with 128 alignments) that
contains read-only in the section .mintvec. Blocks
such as HEAP and CSTACK are defined with a
size of 4 KB and an alignment of 16. Placement

*E% p| ACEMENT SUMMARY

R

build for rom 5

place at start of [from &

ro section .cstartup };

define block MINTERRUPTS

1.
I

initialize by copy {

keep symbol iar cstart init gp;

define block MVECTOR with alignment

ro section .mintvec 1in block MVECTOR

is performed in a statement that includes place,
and HEAP and CSTACK of read-write data

and blocks are specified to be placed in the
memory area 0x8000’0000~0x8003’ffff. These
descriptions reflect the contents of the linker
configuration file.

The important point is that “No sections matched
the following patterns.” This is output when there
is a description in the linker configuration file

to place it, but it is not in the program. Here, it

is stated that there is no read-only data in the
section .mintvec placed in the block MVECTOR.
Whether this is correct or incorrect can only be
known by the person who created the program.
This time, we didn’t use the section .mintvec

in the program. However, EWRISCV deletes
variables and functions that are not directly
referenced, so it is important to check whether
variables and functions that are indirectly
referenced have been deleted.

2000'0000 to Bx3fff'fHff] {

128 { ro section .mintvec };

with maximum size = 64K { ro section .mtextL block MVECTOR };

) to Ox3FFF fFFf] { ro, block MINTERRUPTS

define block HEAP with size = 4K, alignment = 16 {
define block CSTACK with size = 4K, alignment

place in [from 9x8000°'0000 to Ox8003'ffff] {

rw data, block HEAP, block CSTACK };

Mo sections matched the following patterns:

Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here 68

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Section

MINTERRUPTS
.mtext
code ©
.iar.init_table
.text
.text

", part 3
CSTACK
CSTACK

Unused ranges:
From

The second half of the placement summary
describes where sections and blocks were
actually placed. There are five columns here:
Section, Kind, Address, Size, and Object. The
Section column contains the section or block’s

Kind

code

code
code
code

code

code
code
code
code

code

ro

name, the Kind column contains information
about the region, including its Address and Size,
and the Object column is the location (.0) where
the file is defined.

cstartup.o [5]

main.o [1]

__dbg abort.o [2]

__dbg break.o [2]

__dbg xxexit.o [2]

RAM32-1>

low_level init.o [4]

data_init.o [4]

exit.o [4]

cexit.o [4]

copy_init.o [4]
<Block>

8x20 default interrupt handler.o [3]

ro code

ro code

inited

inited

uninit

0x2000'937c Ox3fff fff
0x8000°'10a0 ©x8003"ffff

- Linker created -

main.o [1]

zero_init.o| [4]

<Init block>
main.o [1]

main.o [1]

main.o

main.o

<Block>
<Block tail>

Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here 69

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

The following is an explanation of the most

commonly used kinds.

e rocode: The code of the Readonly attribute

e const: Constants and other data

e inited: Non-zero initialization variables or
regions

MAP:INIT TABLE

INIT TABLE prints information about the
initialization of variables. This area is output when
the compiler initializes variables. Also, if there are
no variables to initialize, it will not be output.

In the C language, there are two types of variable
initialization: zero initialization and non-zero
initialization. In general, zero initialization is a
.bss area, and non-zero initialization is a variable

EEEEE S E]

*¥x INIT TABLE

* ok

Zero (__iar_zero_init2)

e zero: Initialization variable or region at zero
e uninit: Uninitialized variables or regions

initialization of .data. In the following description,
the initialization function __iar_zero_init2 to be
used for the Zero part and the beginning address
and size of the area to be initialized by zero

are described, and the initialization function
__lar_copy_init2 to be used in the Copy part and
the beginning address and size of the area to

be initialized to non-zero are described. If you
change the startup code or write your own, this
initialization function must be called correctly.

1 destination range, total size ©x50:

©@x80ee'eese exse
Copy (__iar_copy_init2)

1 source range, total size ©x5@:

ex2eee‘'e1fs8 ox5e

1 destination range, total size @x5@:

©x8000'0eee ©ox5e

Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here

70

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

MAP:STACK USAGE

STACK USAGE is output by enabling the stack
analysis function in the linker options. Since it is
not specified in detail, EWRISCV analyzes the
stack amount from the program entry. First, three
types of interrupt, Program entry, and Uncalled

EEE L3

¥% STACK USAGE

*kk

Call Graph Root Category Max Use
interrupt
Program entry
Uncalled function

Program entry

@x2060'eeee

__iar_program_start":
Maximum call chain

__iar_program_start"

“__DebugBreak"

interrupt

" _iar_default_minterrupt_handler":

Maximum call chain

" iar_default_minterrupt_handler"

“abort"
= exit”
“ _DebugBreak"
Uncalled function
"hoo": ©x2000'833c
Maximum call chain

”hOO”

function are displayed. For interrupts, analysis is
performed using the handler specified in the __
interrupt as an interrupt. Program entry analyzes
the stack usage from the program entry that
starts execution from the time of reset. If there
is an Uncalled function that is not called by any
function, it will also be displayed.

Total Use

48 bytes
e

©x2000'8360
112
16

bytes

Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here

7

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

STACK USAGE is output by enabling the stack
analysis function in the linker options. Since it is
not specified in detail, EWRISCV analyzes the
stack amount from the program entry. First, three
types of interrupt, Program entry, and Uncalled
function are displayed. For interrupts, analysis is
performed using the handler specified in the __
interrupt as an interrupt. Program entry analyzes
the stack usage from the program entry that
starts execution from the time of reset. If there
is an Uncalled function that is not called by any
function, it will also be displayed. The following
cases include cases where EWRISCV analysis
cannot be performed correctly.
e If you use a function pointer or create a
program with a fixed jump address
e Contains functions written in assembler
¢ When the same function is executed multiple
times, e.g., in a recursive function

#pragma call_graph_root
) {

)

#pragma call_graph_root

id) {

nt main(

{

#pragma calls=foo,goo
fp();

It is also possible to provide information for

stack analysis in a separate file. A separate file
has more content that can be specified. Of the
following three, the top two are #pragma and
have the same specifier content. The third is for
recursive calls. If there is a recursive call, the
compiler does not know how many times it will be

Also, if you use a real-time OS (RTOS), you will
need to use stack usage for each task.

If you want to analyze correctly or want the
necessary information, there are two ways to

do it with EWRISCV. There are two methods:
#pragma, which is to specify it in the source code
or a separate file. Please refer to the manual

for details, but for a simple example, a sample
below is provided. If stack analysis is required
separately, such as when taskl and task2 below
are tasks on the RTOS, specify the #pragma
call_graph_root before the function. If EWRISCV
cannot understand the function call due to a
function pointer, etc., specify the function to be
called with #pragma calls.

executed, but by specifying the upper limit, it is
possible to perform stack analysis correctly.

call graph root: taskl, task2;
possible calls fp: foo, goo;
max recursion depth recursive: 32;

Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here 72

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

MAP: MODULE SUMMARY

In addition to each file, the MODULE SUMMARY
outputs the size of each library by dividing it

into three categories: code size for each library,
read-only data (data that does not change, such
as constants), and read-write data (variables,
etc.). Since the size of the module may fluctuate
slightly with the final executable file due to
optimization by the linker,

2 2 2 2

*** MODULE SUMMARY

2 [2]
__dbg_abort.o
__dbg_break.o

__dbg_xxexit.o

Total:
di-rv32i.a: [3]

default interrupt handler.o

Total:
dl-rv32i.a: [4]

cexit.o

copy init.o

data_init.o

exit.o

low level init.o

zero init.o
Total:

dlmath-rv32i.a: [

cstartup.o

Linker created

Grand Total:

ro code

First, the size of the user code is displayed,

and then it becomes a library. Libraries are
meaningful in their names. In the case of dbg-
rv32i.a, the instruction set is RV32l in the I/0
library for debugging. di-rv32i provides a default
interrupt handler, di-rv32i.a includes printf/
scanf and dimath-rv32i.a is a C math library. This
may change the library used by the extension
instructions.

ro data rw data

Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here 73

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

MAP:ENTRY LIST

The part that embedded engineers use the most As for objects, some created by the linker have a
is this Entry List. In the Entry List, you can check specified file name. If it looks like [2], you can see
the placement status of functions and variables. which file was linked from below. Even if you use
An Entry is a function, variable, or label name, and a library, it is originally a C or assembler file, so it
to the right of it is the address, size, type, Gb/WKk, has a *.0 name, and the entity is indicated in [].
and object. In terms of type, Code is a function, Finally, there is information about the size of the
and Data is a constant or variable. Gb is a globally program, as well as the number of warnings and
defined variable/function, Wk is a function/ errors during the build.

variable with a weak attribute, and Lc is a locally
defined variable/function.

AL ENTRY. LIST

Entry Address Siz Object

.iar.init table$$Base PXx2000 5 j created
.lar.init table$$Limit © P8 033c 1s Linker created
CSTACK$$Base OX¢ POac ib Linker created
CSTACK$$Limit IX80008 " 1836 1s Linker created
MINTERRUPTS$%Base 2x2006" ' 0300 b Linker created
MINTERRUPTS$$Limit 0X2000°031c 1s Linker created

Region$$Table$$Base D 132¢ Gb Linker created

Region$$Table$$Limit B : G Linker created

__DebugBreak PXx2000" 01de ox4 C b _ dbg break.o [2]
__exit px2000"01d 0x28 (¢ b dbg xxexit.o [2]
_ dar copy init2 0x30 Cc Gb copy_init.o [4]
__iar _cstart init gp %20 000 : b cstartup.o [5]
__iar data init2 D% 2¢ ; : b data init.o [4]
__iar default minterrupt handler

default interrupt ha

m Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here 74

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

ndler.o [3]
|_diar program_start 0x2000 " 0008 Code tup.o [5]
| _iar static base$$GPREL {Abs}
ox0 Data Gb <internal
__diar _zero_init2 0x2000'035c 0x20 Code Gb zero init.o [4]
| low level init 5y P'0248 0x8 Code Gb low level init.o [4]
_exit @X cplels Code Gb cexit.o [4]
abort 0x2000"'01380 ©xa8 Code Gb dbg abort.o [2]
©x28 Data Gb main.o [1]
9x28 Data Gb main.o
Ox8 Code Gb exit.o
9x28 Data Gb main.o
0x28 Dat: b main.o
hoo O%20¢ C 9x20 C b main.o

main 5y Oxe8 C b main.o [1]

C:\Users\Documents\Work\Outputiriscv_book\Samples\s2Pe2\Debug\obj

dbg-rv32i.a
di-rv32i.a
dl-rv32i.a
dlmath-rv32i.a
dln-rv32i.a
bytes of readonly code memory
108 bytes of readonly data memory
4'256 bytes of readwrite data memory
Errors: none

Warnings: 1

m Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here

75

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

3. Learn RISC-V on real hardware

3.1 Using the GigaDevice GD32VF103

We will use the Wio Lite RISC-V board equipped

with Gigadevice's RISC-V, which is inexpensively

available as a RISC-V evaluation board. As of

March 2024, this product is sold at Digikey for

11 USD. It will be introduced as it serves as a

suitable example, including how to connect the

debugger.

This board is equipped with a WiFi module and

ESP8266 from Espressif, and a Gigadevice

GD32VF103, but only the GD32VF103 is used

here.

GD32VF103CBT6 specifics: :

e RISC-V compliant little-endian RV32IMAC
(32GPRs);

e Machine (M) and User (U) Privilege levels
support;

e Single-cycle hardware multiplier and Multi-
cycles hardware divider support;
Misaligned load/store hardware support;
Atomic instructions hardware support;
Non-maskable interrupt (NMI) support;

WFI (Wait for Interrupt) support;

WFE (Wait for Event) support;

3.1.1 Debug probe connection

A hardware (debug) probe is required to
download software to the GD32VF103 mounted
on the board and debug it. Here, we will use the
I-jet from IAR. It is connected and used as shown
in the figure below. On the PC, the software is
built using EWRISCV and then downloaded into
the MCU board using |-jet.

MCU board

I-jet can be connected with a JTAG connection,
but let’s check the pins coming out of the board
at this time. As shown in the figure below, there
are pins related to JTAG on the board. Six ports
(signals) are available in the area enclosed in the
red box below.

e TCK:JTAG clock

TMS: Used to transition JTAG TAP controllers
TDO—JTAG data output

TDI: JTAG data entry

3V3: 3V output used as power supply

e GND: Ground

On the evaluation board, it is placed in the area
surrounded by the red line below.

Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here

77

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

On the other hand, let’s examine the I-jet side.
The figure below shows the MIPI-20 connector,
which has a 20-pin signal.

VTref 1 ee 2 | SWDIO/TMS

GND 3 eed | SWCLK/TCK

GND 5 ee6 | SWO/TDO

-—-- 7 @8 |TDI

GND O ee 10| NRESET

TatPwr 11 @@ 12| TRACECLK

TatPwr 13 ®® 14| TRACEDATA[0] swo2

GND 1S ®® |5 TRACEDATA[1] inTRST

GND 17 ®® |8 TRACEDATA[2]

GND 19 @@ 20| TRACEDATA[3]
TCK, TMS, TDO, TDI, and GND can be connected I-jet’s VTref pin is connected to 3V3. This VTref is
to the corresponding pins on the board, and the mandatory to set the signal level.

I/O Header 1/

ort Boot Switch GD32 '

|
| 1

? 3 e85 ISWCLK/ICK
GND 5 eed [SWO,/TDO
=T 7 ®E |TDI
GND 9 e ® 10| NRESET
TuPw iz oo 1] mACEDATALD] SWo2
GND |15 ®® 16| TRACEDATA[L] inTRST
GND !]7 ® e |8 TRACEDATA[2]
| GND 15 ® 20| TRACEDATA[3]
1/O Header GD32 VF103 MCU ITAG
GD32
Since the small MIPI-20 connector is difficult to breadboard and jumper wires. Note that this type
handle, we prepared a pitch conversion board of connection is not recommended for high-
and connected it to the GD32 JTAG pins using a frequency signals.

m Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here 78

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

3.1.2 Checking the connection with IAR I-jet

Once the board, I-jet, and PC are connected, we
should check whether the connection is correct.
An evaluation board with a pre-mounted MIPI-
20 connector always makes a reliable JTAG
connection. Still, in this example, the connection
may be bad because we used a breadboard and
connected the pins manually.

Select communication interface

When you install EWRISCV, you will find a program
called Emudiag.exe in

\riscv\bin\jet

under the folder where the tool was installed.
When it starts, click [Connect] and click Test
JTAG... Click.

Status: |
Available devices

ReScan Devices

% 5 Emuliag 164 - o b
Emudalor; [l-et 80241 Hely |
Probe: Versions: JTAG=1.95 SWO=1.41 A2D=1.74 Scream=1.52 SigCom=2.46 A |ITAGRt ~
OK: I-jet:80241 -
Get info: L |

Get Info.
Emulator: I-jec:80241
Update
Current FLASH: Fimware..
Model: I-jet (04/29/2016 11:52)
Version: &
ERN: 1204 (03/27/2015 09:37)
S/N: 80241 (03/27/2015 09:37) |anTests =
Test
Binary Dump: Connechon...
HW Record[l6]
EMPTY (16 bytes) Test JTAG. |
Cancel | ID Record[30] e
1E 01 07 00 29 04 16 2 110 1200500 27003 ek P Reasie v ATAG Crnd.
15 20 37 09 41 02 15 20 37 0% B T =
et Power..
Data[4050] LA
EMPTY (4050 bytes)
Current EEPROM:
Bodels e [iCRRLS |
B0241 (03/27/2015 09:35) SavelLog.
2 (07/23/2013 17:29 IR PRy
o = Copy Log to
the Cipboard

e e e EEEE——

When the JTAG Configuration screen appears,
click [Autodetect]. After clicking, you will see

the area circled in green. If the connection is
successful, you will see these results.

JTAG Configuration

JTAG Parameters 1

JTAG probe
[aRM 20 gin

JTAG clock
j MDrt,..J g&.EMHz

[~ Use SWD CoreSight port

ITAG initialization

3 ™ Auto ! Test J{bn:pass E‘

| Standard (without TRST)

j | e TAES i el e Lica

0 -"..-_i LIS J

Help.. |

| |Ch>ck 9.6MHz - OK, 2 devices in the JTAG chain. Total IR length: 10 bits.

i Autodetect |

TAPE1 (R=7) TAPO (IR=7)
BYPASS BYPASS
T
D=0x7S000743 D=0x10005630
OO

i
Verify |

Edit...

Insert At... I

Append...

Duplicate l

Delete |

oK st |

Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here

79

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

An example of a connection not being properly, you will get an error like this. In such a
established successfully will also be shown. This case, please stay calm and make sure that the
is an example of disconnecting the TMS from a connection is properly checked.

correct connection. If JTAG is not able to connect

ITAG Parameters
1 TTAG probe JTAG clock
| RM 20 pi | Moaore.. 10MHz ™ Auto Test ||
| |,\\qM 20 pin =] ore. - u s ne pass -

[~ Use SWD CoreSight port

TTAG initialzation

[Standard (without TRST) =] [Grly TS line vl be st =

d

Help...

|Cluck 10MHz- FAILED, No device in the ITAG chain.

Autodetect

JTAG Test Failed x

il

ITAG test failed - the TDOVSWDID pin held parmanently |ow Irisert At

F

Try the following to fix the problem:
3 ik Lol Append...
" Make sure that the adapter selection matches the JTAGjet
adapter.

* Try using a lower ITAG clock frequency

} * Avoid using multiple adapters. Use an adapter that matches
| the target connector, if possible,

* Disable the on-board buffers on the ITAG lines, if possitie.

Ui

* Verify that the pull-upy/down resistors are in recommended
range. OK ol

"'.'e-nﬁ- JTAG connections on the target.

Conzult the documentation (the Help button) for more hints,

When the analysis is complete, exit the Emudiag
application with [OK]-[Donel]. If this is running,
you may not be able to connect from EWRISCV.

m Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here 80

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

3.1.3 LED blinking: creating sample & using GPIO
Look at the schematic of the Wio Lite RISC-V
board to check the LED connections. Since the
LED is connected to the PAS8, we will flash this
LED.
GD32VFIO3CBT6
Now, let’s create a project. From EWRISCYV, select Specify the project file name as appropriate. This
[C]-[main] in [Project]-[Create New Project]. time, we have named it S3PO1.
& AR Embedded Workbench IDE Create New Project x
File Edit View | Project | Tools Window Help Tool chain; RISCH v
N M R 3| Lel AddFites.. Frojecttemglales
o= Ml 21 Empty project
Waorkspace Le| Add Group... -5 asm
|2} importFile List... j E"
Add Project Connedtion... &
Files #-3 DLib
Edit Configurations... & Externaly built executable
#- Libcpp
Remove
T Create New Project...
™ . . Dezcription:
d A Bt Frajecl. [pfm-e;:t using defaul tool zeltings including an empty man.c file.
» Options... Alt+F
Version Control System
Cancel
:’ Make F7
Select the folder you want to create a project and Workspace] to name the workspace. Please
give it a project name. Next, execute [File]-[Save specify the workspace file name here as well.
]

m Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here 81

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

You now have a project and a workspace with one

main.c.

& AR Embedded Workbench [DE - RISCY

Ele Wiew Projedt Simulator Tooks 'Window Help

L1 MNewFile Ctri=N 5
1] Hew Workspace S Cacer fen iy
™ Open File.., Ciris 0
' Open Workspace...
. nainl woid
_ﬂ Dpen HeaderSource File CEirl=5hift=H
Gl Close cii-F4 ftarn 03
&l save workipace
ﬁ] Save Workspace As...
6] Close Workspace
B save Ctri=5
G Save As.
B Savean
&, Page Setup..
B Prirt. Ctri=P
Recent Files
Recent Workspaces
0O &
9 IAR Embedded Warkbench IDE - RISC-V 3.30.1 T]
Ble Edit Yiew Project Simulator Tools Window Help
MA@ = o E] Q> %< 0> RG= O -
Workspace * 8 % [ARinformation maine x
[Debug |
1 11
Files o g i BeeiED
naint v
B @S3P0T - Debue - ~ i
L@ B maine g
[return
711
8
S3PM
Debug Lag
Low
Tue Mow 07, 2023 1314 05 IAR Embedded Workbench 330 1 (riscuproc dil)
Ready Errors 0, Wamnings 0 Ln1, Col1 Japanese [Shift-JIS) CAP 1

Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here

82

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

For EWRISCYV, let’s specify the microcontroller
to be used this time. Double-click the check
next to the project name in the workspace to
open the option settings screen. In the figure

below, the project name is “S3P01.” Double-click
the red arrow 1. On the options screen, select
the GigaDevice GD32VFI03CBT6 in [General
Options]—[Target]—[Devicel.

=]
File Edit \iew Project Simulastor Took Window Help
R (% ; 4 = E®=0 - .
Workipace v o Xx AR hnd ation ter for @ maing X '.
Debug 2 L
- | ns X
Files & H
=L j53P01 — Dab [~} E
Jerainc Caings
@ 4
Fish o Libary Canfiguration Library Options Library Options 2
ik e o I5A Extensions Code Generation Output
Ot i Device Base 154
Liker
Buld Actions Rv32 E| 3 RVIZE
j;;f:__a Andes >
bt Standard extensions o '
amudator Codasip >
Thied Party Deiver Bm o B4 Espressif >
En BEc BN i
s it manipulation Frausboler 2
RRELOD Hzee Bzeb 2o Hee b 2
Log »
Tue Now 07, 2023 1371400° [AR Erbaddel Cido s b o 3
HPMicr » G 3CHTE
towise :
Micrachip 5 GigaDevice G 4TS
NSITEXE >
Muclei »
Ready Errors 0, warnings 0 i OpenkiW o
Shakti
SiFive
T Head >
WCH
WestemDigital >

In chapter 2, detailed settings were required
whether to use extended instructions, etc., but
those supported by EWRISCV can be set by are the settings for the options related to the

simply specifying the device. As for the settings instructions when the current GD32VFI0O3CBT6 is
related to instructions, it is okay to leave the selected.

default. However, if it is necessary to align the

options in order to use different microcontrollers,
the user should change them. The following

Options for node "S3P01" X Options for node *53Po1* X
Category, Category:
| General Optons General Options

Static Analysis |Stabe Analysis

€jc+4 Compiler CJC++ Compler -

rary Configu rary Options 1 y Options 2 Library Configurat orary Options Library Options 2
Kl Library Configuration Library Options Library Option: Anseribie ibrary Configuration Library Options 1 ibrary Option:
Output Converter Target 1SA Extensions Code Generation Qutput Output Converter Target ISA Extensions Code Generation Output
Custom Build Custom Buid
. Device Base [SA % Cache management

Linker Linker

Buid Actions GigaDevice GD32VF103CBT6 O RvV32 Build Actions

Debugger - 2 Debugger

GDE Server Ve GDB Server Andes extensions Dsp

Lt Standard extensions 1304 @None

Simulator Simuator

- - Floating-point settings: " X
Third-Party Driver Hm A = Third-Party Driver CoDense
Bc FPU |None ~
oper
8it manipulation o
Code size reduction Scalar cryptography
0K Cancel 0K, Carcel

Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here 83

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

The advantage of the EWRISCV device support
is that header files for peripheral access can also
be used. #include <gigadevice/ioGD32VF103.h>
allows peripheral access.

1;

for (i=8; i< 560000;i++);

main(M
RCU_APB2EN_bit.PAEN=1;
GPIOA_CTL1_bit.MD8

GPIOA_CTL1 bit.CTLS8

while(1) {
GPIOA_OCTL_bit.OCTL8
delay();
GPIOA_OCTL_bit.OCTL8
delay();

}

return ©;

}

Let’s take a look at the definition in the header
file in the APB2 Peripheral Clock Enable Register
(APB2EN). The left side of the figure below shows
the part where APB2EN is defined. It is a union,
and if you want to access it with 32 bits, use RCU_
APB2EN. If you want to access it with a bitfield,

__no_fnit volatile union

unsigned int RCU_APBZEN:
g et 3130 29 28

#include <gigadevice/ioGD32VF183.h>

27

In order to blink the LED this time, it is necessary
to enable the GPIOA clock and set the PA8 to
output and PushPull settings.

use RCU_APB2EN_bit. Use XXX, where XXX is
the name of a separate field.

In the previous example, only the PAEN bit is set,
so RCU_APB2EN_bit. PAEN=1; it is described in.
The same is true for the GPIOA's CTL1 and OCTL.

3.4.7 APB2 Peripheral Clock Enable Register (RCC_APB2PCENR)
Offset address: 0x18

26 25 24 23 22 21 20 16

unsigned int AFEN

Reserved I

unsigned 1n b

12

11

10 9 8 v 6 5 4 3

(5]
=}

unsigned int PCEN
unsigned int PDEN
unsigned int FEEN
unsigned int
unsigned int ADCOEN

USAR
Tl
EN

Reser

SPI1
ved N

EN

TIM1
EN

ADC
1 Reserved
EN

IOPD
EN

I0PA
EN

Reser
ved

Reser|
ved

Reser
ved

IOPC

AFIO
EN N

EN

unsigned int ADCIEN
unsigned int TIMEROEN :
unsigned int SPIOEN
unsigned int :
unsigned int USARTOEN :
unsigned int B
} RCU_APB2EN bit:
|

i

} @ 0x400210187

Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here

84

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

For devices that support EWRISCV, a linker
configuration file is usually provided in addition to

GD32VFI03CBT6. You don’t have to understand
the contents of this file at first to create a

the header file. This time, the linker configuration
file is also selected by selecting the device as

program.

define exported symbol _link_file_version_2 = 1;
define exported symbol _auto_vector_setup = 1;
define exported symbol _max_vector = 96;
if (isdefinedsymbol(_disable_clic))
{
define exported symbol _CLINT = 1;
else
{
define exported symbol _uses_clic=1;
define exported symbol _CLIC_GIGADEVICE = 1;
1
keep symbol _ iar_cstart_init_gp;
keep { ro section .alias.hwreset };
define memory mem with size = 4G;
define region ROM_region32 = mem:[from ©x@8000000 to @xO8@1FFFF];
define region RAM_region32 = mem:[from ©x20000000 to @x28@07FFF];
initialize by copy { rw };
do not initialize { section *.noinit };
define block CSTACK with alignment =
define block HEAP with alignment =

define block MVECTOR with alignment =

16, size = CSTACK_SIZE { };
HEAP_SIZE { };

_max_vector*4 { ro

16, size =
128, size =
section .mintvec };

if (isdefinedsymbol(_uses_clic))

{
define block MINTERRUPT with alignment =
define block MINTERRUPTS { block MVECTOR,

block MINTERRUPT };

128 { ro section .mtext };

define block MINTERRUPTS with maximum size = 64k { ro section .mtext,
midway block

MVECTOR };

i

define block RW_DATA with s

"CSTARTUP32" :

base GPREL { rw data };

place at start of ROM_region32 { ro section

.alias.hwreset,
ro section .cstartup };
"ROM32":place in ROM_region32 { ro,
block MINTERRUPTS };
2" :place in RAM_region32 { block RW_DATA,
block HEAP,

block CSTACK };

Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here

85

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

3.14 Set up the debugger and start running

Now that the program is ready, it is intended to be will be used for the hardware probe, so select
downloaded and executed. In this case, |-jet [Debugger]-[Setup]-[Device] as [I-jet].
Options for node "S3P0T° X
Categary: Factoy Settings

General Options
Static Analysis

CJC++ Compiler ™
Fiie Download Images Multicore Extra Options Plugins

Output Comverter

Custom Build Driver [Run to:
ustom Buil
Build Actions FE—
ETVES [_ ise macro File:
Ijet
Simulator

Third-Party Driver . B
Device description file

[l Qverride default:

Cancel
When the device is supported by EWRISCYV, particular evaluation board. In the case of
the flash loader can be used as an option in GD32VF103CBT6, an on-chip flash is supported.
the [Debugger]-[Download] part. This may Please note that if you do not select Use Flash
be the case with only the internal flash or Loader, you will not be able to write to the flash
with the external flash memory used on a memory area.
Options for node "53P01 x
| Categony:
3 Factory Seitings
General Options
Static Analysis
i;\;:b:mwy Setup Images Multicore Extra Options Plugins
Output Converter e
Custom Buid
Linker
.'er - Dwvernde default .board file
;‘:;Lamr o
Third-Party Driver
Cancel

m Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here 86

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

If you want to support external flash memory even So, you can implement it by referring to this.

with a compatible device, or if you're going to There are also examples of flash loader source
write a program to the flash memory of a device code in the folder:

that does not yet support it, you need to do it
yourself. In this case, there is a manual called

[FlashLoaderGuide.ENU .pdf] in the folder where For example:

EWRISCV is installed: \riscv\src\flashloader\GigaDevice\GD32VF183
Finally, the LED blinks when you run the program.

Blinking LED

m Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here 87

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

3.14 Learning about interrupts

It is quite difficult to create an interrupt program this example. It is difficult to create an interrupt
with a microcontroller for the first time. EWRISCV program for the microcontroller you are using
has a sample of the GigaDevice GD32VF103V- from scratch, so the fastest way to learn is to use
EVAL board, so even though the board is a sample. The sample is in the information center,
different, an attempt will be made to use it in so open the information center of EWRISCV.

Then, click Example Projects.

© 1R Embedded Workbench IDE

-Fllﬂ Edit VITW Project Tools \\u’wndow =
LOES 8 0] i IAR Information Center for RISC-V

Workspace ¥ 0 X | AR Info

Search... e rT worials, example projects, user

SuppOn inferman:

Files o Product updates

Release notes

IDE Froject Management and Building Guide - g

C/C++ Development Guide ‘“ﬂ &=
Assembler User Guide

£-5PY Debugging Guide

C-STAT Static Anal lysis Guide Product exploter User guides lnmpl: projects Integrated solutions
ekl o Al e e i T :
[AR on the Web

Information Center

£ License Manager...

About »

| Harchware solutions Support Retease notes My pages v
Wh "E le Proj ¥
en you come to "Example Projects”, open
[GigaDevice GD32VF103V-EVAL]-[TIMERO
6-steps] (see figure below).
le Edt View Pesject Tool Window kel
10 S = 1] L £ B o=
IRipace -9 x| ¥ . x)
- e PV g FIUULCLEX
L L GigaDevice GD32VF103V-EVAL
Examples — B
— W user guide
Info Open Name Description
project
& ADC regular paraliel conversion ADC fegular paraliel conversion exampie project W Example p
] ADC conversion thraugh DMA ADC conversion through DMA example project
QA
ADC temperature reading ADC temperature reading example project o Integrated
CRC Calculation example CRC Calculation example project
*
I “ Hardware
g:’f‘“ Qensiate Bgnal Do DACO generate signal from DMA example project &
GPIO keyboard polling mode GPIO keyboard poling mode example project
a Support
GPIO biinking LED GPID biinking LED example project
T - TIMERD 6-steps .
MERD 6-steps IMERD 6-sleps example project Relosse i
&% 3 TIMERO DMA TIMERD DMA example project

m Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here 88

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

This will open this project in EWRISCV by
specifying the save folder.

There is not only one interrupt in the GD32VF103,
but it can be switched and used in the settings.
RISC-V defines CLIC (Core Local Interrupt
Controller) and CLINT (Core Local INTerrupt),
ACLINT, etc. CLIC and CLINT will be better

understood by looking at references [7]. CLINT

is a simple interrupt controller that handles
internal interrupts and handles external interrupts
together with MEIP/MEIE. The PLIC (Platform-
Level Interrupt Controller) is configured to handle
external interrupts at that time. MIP and MIE of
CSR manage interrupts in the figure below.

MIP register MIE register
3l 12 m 10 9 8 7 6 5 4 4 2 1 3 12 m 10 9 8 7 6 b 4 4 2 1 o]
S s S s S S
E T S E T S
[I I I | [
P P P E E E
. 7 MEIP: external interrupt pending bit Machi | MEIE: External interrupt enable bit
Maghlne MTIP: Timer interrupt pending bit a((; ne MTIE: Timer interrupt enable bit
mode MSIP: Soft interrupt pending bit mode MSIE: Soft interrupt enable bit
. - SEIP: external interrupt pending bit . - SEIE: External interrupt enable bit
rSﬁuO%eewlsor -+ STIP: Timer interrupt pending bit Smuo[iirvlsor - STIE: Timer interrupt enable bit
SSIP: Soft interrupt pending bit SSIE: Soft interrupt enable bit

On the other hand, the CLIC is managed using
management registers without using MIP/MIE.
You can set the priority of the interrupt, the trigger
type, and the vector response for each interrupt.
In GD32VF103, ECLIC (Enhanced Core Local
Interrupt Controller) is implemented based on
CLIC. Not everything can be explained here, but
the important parts will be covered. So, if you
want to investigate in detail, please check the
operation while looking at the sample.

First, let’s examine the functions used in the
sample code. The following functions are called
intrinsics functions provided by EWRISCV and
define functions that cannot be written in C but
are often used.

Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here

e __disable_interrupt()—Disables CPU
interrupts.

e __set_bits_csr(reg, val): Sets the bit with the
value of val for the CSR specified by reg.

e __clear_bits_csr(reg,val)—Clears the bits with
the value of val for the CSR specified by reg.

e __write_csr(reg,val): Sets the value val for the
CSR specified by reg.

e __read_csr (reg): Reads the CSR specified by
reg and returns the contents.

In the sample, the basic settings for interrupts
are implemented in the function __low_level_init.
MTVT, MTVT2, and MTVEC are configured. As
explained in the figure below, it is set to operate
in CLIC mode and call irg_entry when an interrupt
occurs and trap_entry when TRAP/NMI occurs.

89

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

g fnt lorlevel init() Disable CPU interrupts using the intrinsics function provided
__digable_interrupt();

7% Set the ths HMIT base to share with ntvec by setting CSR_WMISC CTL &/ by EWRISCV

/% 11 0, 0x2i
/¥ Cérs C"RXMMISC _CIL, t0 / = =

—set_bite_osr{/ACSEINISC_CILA/ 0:7D0, 0x20003 Setting to generate an interrupt when NMI occurs
/% Initialize the mtwt ¥/

/* la 10, vector_base */

¥ CSR_MTVI, 0 *f i H H
/ w;?{e eeyT CSRNTYT, ((unsigned ,,,t) sed_vector_bass)): Setting the address used in vector mode (vector mode is not
4 ;z :glzaa‘l:?: Ekir?tvti and enahle it % USed in thiS Sample}

cerw CSR_MTVTE, t0

g SRR CECMIGIES D8 Registerthe vector that handles external interrupts in MTVT2.
_yrite_cer(/* CSR_MTVT2%/ 0x7EC, Oxl | ((unsigned int)&irg_entry));
dk ;i Igl‘éaﬁlg:ptg Crf‘;F WTVEC for the Trap ane NWI base addrs/ By Settlng DX1, the mtvec? address WI” be used during
£/ cgrw CSE_MTVEC, tD |nten‘upts_
__write_cer(_CSR_NTVEC, 0x03 | ({unsigned int)&trap entry)); Setting the lower 1 bit to Ox0 uses mtvec.

/% Enable nyeyele_mingtret */
__clear_bits_car(7+CSR) MCOUNTENHIEIT*E 0320, 0x5);
return i

Register vectors to MTVEC to be executed when TRAP or
L NMI oceurs.
try when TRAP or NMI occurs.
[tis set to CLIC mode with Ox03. If the lower 2 bits are other
than 0x3, it enters CLINT mode.

On the other hand, interrupt vectors are created array, and the interrupt handler calls individual
in arrays, and zeros are set to parts where there functions depending on the interrupt factor.
are no handlers. Functions are specified in the

typedef void(*_ fp)();:
?unst _ fp gd_vector_hase[96] =
=
I:I!

D:
D:
eclic_mzip handler,

eclic_mtip handler,
1

I:I!

D!

D:

D:

D!

I:I!

eclic_bwei_handler,
eclic_pmovi_handler,
WUDGT_IROHand ler,
LVD_IEQHandler,
TAMPER_[RQHandler,
RIC_IEOHandler,
FMC_IEQHand ler,
ECU_IEQHandler,
EXTIN_IROHandler,
EXTI1_IRGHandler,
EXTI2_IRGHandler,
EXTI3_IRQHandler,
EXTI4_IRCHandler,

DWA0 ChannelD IROHandler,
DMA&D_Charmell IEQHandler,
DMAD_Charmels_IEQHand ler,
M0 _Channeld_IROHand ler,
M0 _Channeld_IROHandler,
DM&D_Charmel5_IEQHandler,
DM&D_Charmelf_IEQHandler,
ADCO_1 IRQHandler,
CANO_T¥_IROHandler,
CANO_EXD_IEQHandler,
CENO_EX1” IROHandler,
CANO_EWC_IROHand ler,

m Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here 90

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Now, let’s move on to the interrupt handler. We
will explain how to define a handler in EWRISCV.
EWRISCYV provides __interrupt as an extended
keyword. You can define it as a handler by adding
the following __interrupt before defining the
function. The interrupt handler has no arguments
and no return value, so the arguments and return
value are always void.

i my_interrupt_handler(void);

So why should you use this __interrupt? Describes
the following: If this __interrupt does not exist, it
will be a normal function. As explained in [2.10.2
Rules for Calling Functions], the use of registers
when calling functions is as follows. The scratch
register is a register that the function can freely
rewrite. When called as a function, the caller

of the function saves the value of the scratch
register on the stack and calls the function. This
allows the called function to change the value of
the scratch register freely.

nifunclinta, intbj{
return a+b;

|_interrupt void func3(void) {
d2 = func(d0,dl);

<
func3:

addi sp,sp,-0x20 7
SW ra, Ox1C{sp)

sw 11, 0x18(sp)

SW s0, Ox1isp)

SW a0, Ox10(sp)

Since this is a handler, we save the
mll registers we use here on the stack

SW al, OxC(sp)

addi sO, gp, OxC

Iw al, 4(s0) Sat the function call arguments to
Iw a0, 0(s0) a0,al and call the function
call20 func

SW a0, 8(s0) Write the result to memory

Iw ra, Ox1C{sp)

w11, 0x18(sp)

Iw 50, Ox14(sp)
Iw a0, Ox10(sp)
Iw al, OxClsp)
addi sp,sp, Ox20
mret

Recover used registers from the stack

Return from interrupt

1. Scratch registers t0O~t6, ft0O~ft11, a0~a7,
faO~fa7

2. Storage registers SO~S11 and FSO~FST11,

3. Application-specific registers sp/x2, gp/x3,
ra/x1

The registers used by the handler must be saved
to the stack when an interrupt occurs, and the
value of the register must be returned when

the handler exits. Otherwise, when the interrupt
handler returns, the value of the register will
change, and the behavior will be strange. Of
particular concern is the scratch register part.
The figure below shows how the generated

code changes depending on the presence or
absence of __interrupt. On the left is the interrupt
handler with the __interrupt, and on the right is
the normal function. On the interrupt handler
side, all registers used in the handler are saved,
but only the stack pointer is saved in the function.
You can see that calling the function func itself

is the same as calling it from the function when
calling it from the handler (green part). After the
processing of the function func is completed
and the result is stored in memory; it is a return
process of the saved register.

intfuncfinta, intb){
retum a+b;
}
void funcdvoid) {
d2 = func(d0dl);

- L
funcd:

addi sp, sp, -OxI0 the stack when changing anything
sw ra, OxClsp) other than the scratch register

addi a2, gp, OxC
Iw al, 4(a2) Set the function call arguments to

]‘ Since func4is a function, save it to

Iw a0, Ofa2) a0,al, function call
call20 func

swW a0, 8(a2)

Iw ra, OxC{sp)
addi sp, sp, OxIO
ret

Write the result to memory

Restore stack pointer value

Retum from function

Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here 91

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

The actual interrupt handler definition is shown that, the saved register is restored, and the

in the figure below. In this program, external interrupt returns. This sample appears to be
interrupts are irg_entry, and TRAP and NMI are set up for handling multiple interrupts; however,
trap_entry interrupt handlers. Therefore, you can it does not fully implement this capability,

see that irg_entry and trap_entry are __interrupt. preventing the system from effectively managing
In irg_entry, the CSR MCAUSE, MEPC, MSUBM, concurrent interrupts.

etc., are saved, and the handler is called. After

L{:intptr_t handle_trap(uintptr_t mcause, uintptr_t sp)
1

_fp fp; _

meause &= 0xFFF; l) .

o =(gr%,vectar,basa[muse]; I} Select and call the handler to process using the number stored in mcause

if (fp
fplls

return 0

-}
.inELr_rypé void trap_entry()

uintptr_t meause = _read_csr(_CSR_MCAUSE);
handle_trap(ncavse, 0);

In EWRISCYV, interrupt handlers are marked with __interrupt

AECREEE Il) B Since the factoris included in CSR's MCAUSE, save it in a local variable

uintptr_t ncause = _ read_csr{ _CSR_MCAUSE):
uintptr_t mepe = _ read_esr(_CSR_MEPC);

uintptr_t meubn = _ read_csr(0x7C4);
handle,,trap(mcause, 1}

,’/Sr?‘m(bfsnjw ra,Ux?]El}J. ra’ 3
_ dizable_interrupt(); z : :
“write_car(_CSR_MCAUSE, mcause)’ Save the current interrupt state and the previous interrupt state to MSUBM

—3rite_cnct CLENERC, opc); of CSR. Save this to a local variable.

E

The interrupt return destination is saved in the MEPC of CSR, and its value is
saved in a local variable

Call handle_trap with the interrupt factor as an argument

After that, it is necessary to configure the CLIC, The interrupt type can be set to level, edge, etc.
and in the GD32V103, the ECLIC setting. It's For each individual interrupt, a clicintie and a
hard to explain everything here, so I'll explain the clicintip are brought in as permission and hold
point. For details, please read the manual. ECLIC flags. For this reason, we do not use CSR MIE,
provides the following registers: Does clicintattr MIP, etc.

receive interrupts as vectors for each interrupt?

Offset Permission Register Bit Explanation
0x0000 RW cliccfg 8 Level/priority bit width specification
0x0004 R clicinfo 32 CLIC implementation information
0x000b RW mth 8 Defining interrupt thresholds
0x1000+4*i RW clicintipl[i] 8 i-th interrupt pending flag
Ox1001+4%i RW clicintieli] 8 i-th interrupt enable flag
0x1002+4%i RW clicintattrli] 8 i-th interrupt type specification/vector setting
O0x1003+4%i RW clicintctl[i] 8 Setting the i-th level/priority
@

m Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here 92

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

The configuration of this CLIC in the sample is Hence, the expectation is for EWRISCV to be
as follows: By continuing to read with reference utilized.
to the sample, your understanding will deepen.

int main(void):

- gpio_config();¢ Allow CPU interrupts
eclic_global _interrupt_enable(); /
eclic_set_nlbits(ECLIC_GROUP_LEVEL3_PRI01) »—(Sde A Culiag =R leReli el

ik B -/ TIMERO_TRG_CMT_IRQ for CLIC, set level=6,
riority =1
while(1){: FRGTY
delay _Ims(10);+
| timer_event_software_generate(TIMERO,TIMER_EVENT _SRC_CMTG);:
4

#:‘ - Generate a TIMER event for TIMERO from software

m Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here 93

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

315 Let’s check the CSR

In RISC-V, Control and Status Registers (CSRs)
are important for checking the operating status
and controlling interrupts. Here, we will check
how to access CSRs and check some CSR
registers in GD32VF103CBT6.

RISC-V does not have any arithmetic flags

Before we get into CSR, let’s talk about arithmetic
flags. Cortex-M, which is often used in embedded
systems, has the following five operation flags,
but RISC-V does not have these operation flags.
Therefore, please understand that there is no
arithmetic flag.

¢ N flag: A negative flag that is equal to 1if the
result of the operation is negative.

o Z-flag: A zero flag, which is 1if the result of
the operation is zero.

o C-flag: Carry/Borrow flag, which is 1if the
result of the operation is a carry or a carry.

o Vflag: An overflow flag that is equal to 1in the
event of an overflow.

¢ Qflag: The saturation flag, which is 1if
saturation occurs in the saturation operation.

Machine-Level CSR
In reference [5], the Machine-Level CSR is

described in the Machine-Level ISA (Machine
Level Instruction Set) chapter.

Number Name Memo

Machine Information Registers

OxF11 mvendorid Vendor ID

OxF12 marchid Architecture ID

OxF13 mimpid Implementation ID

OxF14 mhartid Hardware thread 1D

OxF15 mconfigptr Pointer to configuration data structure
Machine Trap Setup

0x300 mstatus Machine status register

0x301 misa ISA and extensions

0x302 medeleg Machine exception delegation register
0x303 mideleg Machine interrupt delegation register
0x304 mie Machine interrupt-enable register
0x305 mtvec Machine trap-handler base address
0x306 mcounteren Machine counter enable

0x310 mstatush Additional machine status register(RV32 only)
Machine Trap Handling

0x340 mscratch Scratch register for machine trap handlers
0x341 mepc Machine exception program counter
0x342 mcause Machine trap cause

0x343 mtval Machine bad address or instruction
0x344 mip Machine interrupt pending

0Ox34A mtinst Machine trap instruction (transformed)
0x34B mtval2 Machine bad guest physical address

Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here 94

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

The rest of the list is not explained in this book,
but it is defined as a standard.
Number Name Memo
Machine Configuration
Ox30A menvcfg Machine environment configuration register
Ox31A menvcfgh Additional machine env. conf. register(RV32 only)
Ox747 mseccfg Machine security configuration register
Ox757 mseccfgh Additional machine security conf. register(RV32 only)
Machine Memory Protection
Ox3A0 pmpcfgO Physical memory protection configuration
Ox3A1 pmpcfgl Physical memory protection configuration(RV32 only)
Ox3A2 pmpcfg2 Physical memory protection configuration
Ox3A3 pmpcfg3 Physical memory protection configuration(RV32 only)
Ox3AE pmpcfgl4 Physical memory protection configuration
Ox3AF pmpcfgl5 Physical memory protection configuration(RV32 only)
0x3B0O pmpaddrO Physical memory protection address register
0x3B1 pmpaddri Physical memory protection address register
Ox3EF pmpaddr63 Physical memory protection address register
Machine Counter/Timers
0xB0OO mcycle Machine cycle counter
0xB02 minstret Machine instructions-retired counter
0xB03 mhpmcounter3 Machine performance-monitoring counter
0xB0O4 mhpmcounter4 Machine performance-monitoring counter
OxB1F mhpmcounter31 Machine performance-monitoring counter
0xB80 mcycleh Upper 32 bits of mcycle(RV32 only)
0xB82 minstreth Upper 32 bits of minstret(RV32 only)
0xB83 mhpmcounter3h Upper 32 bits of mhpmcounter3(RV32 only)
0xB84 mhpmcounter4h Upper 32 bits of mhpmcounter4(RV32 only)
OxB9F mhpmcounter31h | Upper 32 bits of mhpmcounter31(RV32 only)
Machine Counter Setup
0x320 mcountinhibit Machine counter-inhibit register
0x323 mhpmevent3 Machine performance-monitoring event selector
0x324 mhpmevent4 Machine performance-monitoring event selector
Ox33F mhpmevent31 Machine performance-monitoring event selector
@

Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here

95

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Debug/Trace Registers
(shared with Debug Mode)
Ox7AO tselect Debug/Trace trigger register select
Ox7A1 tdatal First, Debug/Trace trigger data register
Ox7A2 tdata2 Second Debug/Trace trigger data register
Ox7A3 tdata3 Third, Debug/Trace trigger data register
Ox7A8 mcontext Machine-mode context register
Debug Mode Registers
0Ox7B0O dcsr Debug control and status register
0x7B1 dpc Debug PC
0x7B2 dscratchO Debug scratch register O
0x7B3 dscratchl Debug scratch register 1

@

m Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here 96

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Programmatic access to CSRs

Specific instructions also exist for accessing the

CSRs. They are defined as Zicsr in reference [4].

The basic instruction is the CSRRW. The contents

of the specified CSR are output to register rd, and

the contents of the CSR specified in register rs1

are rewritten.

e CSRRW rd, csr, rs1; Read/Write

e CSRRSd, csr, rs1; Read and Set bit

e CSRRCrd, csr, rs1; Read and Clear bit

e CSRRWIrd, csr,imm; Read/Write Immediate
Value

e CSRRSIrd, csr,imm; Read and Set bit
Immediate Value

e CSRRCIrd, csr,imm; Read and Clear bit
Immediate Value

However, many people are not comfortable
programming in assembler, so EWRISCV
provides the following intrinsic functions to
access CSR. Each function specifies a CSR and
performs the operation. All functions return the
value before the CSR operation in the return
value.

#include <intrinsics.h>

print_csr_status(

printf("MVENDORID
printf("MARCHID
printf("MIMPID
printf("MHARTID

e __clear_bits_csr (csr, value): Clears the
specified CSR with value.

e __set_bits_csr (csr, value): Set the specified
CSR with value.

e __read_csr (CSR): Reads the specified CSR
e __write_csr (csr, value): Reads the specified
CSR and rewrites the value.

Now, let’s create and execute a program that
accesses CSR. I'm using the intrinsics function
to read the CSR and then using printf to write it
to standard output. For the part where the CSR
is specified, the #define from csr.h was used.
CSRs that are not defined there can always be
specified directly by their CSR number. This is
the part that got a runtime error when executing
the application. The reason might be that the
specification has been revised, or it may be

up to the device vendor whether the CSR is
implemented or not, so this may occur. In the
code example below, the problematic parts have
been commented out.

@x%x\n", _ _read_csr(_CSR_MVENDORID));

@x%x\n", __read_csr(_CSR_MARCHID));
ox%x\n", __read_csr(_CSR_MIMPID));
8x%x\n", __read_csr(_CSR_MHARTID));

Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here 97

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

printf("MSTATUS @x%x\n", _ read_csr(_CSR_MSTATUS));

printf("MISA @x%x\n", _ read_csr(_CSR_MISA));

printf("MEDELEG @x%x\n", _ read_csr(_CSR_MEDELEG));
printf('MIDELEG @x%x\n", _ read_csr(_CSR_MIDELEG));
printf("MIE @x%x\n", _ read_csr(_CSR_MIE));
printf("'MTVEC @x%x\n", _ read_csr(_CSR_MTVEC));
printf("MCOUNTEREN @x%x\n", _ read_csr(_CSR_MCOUNTEREN));

printf("MSCRATCH ix\n", _ read_csr(_CSR_MSCRATCH));
printf("MEPC x%x\n", _ read_csr(_CSR_MEPC));
printf("MCAUSE Bx%x\ _ read_csr(_CSR_MCAUSE));
printf("MTVAL x%x\n", _ read_csr(_CSR_MTVAL));

The result of running the above code is shown
below.

ex3le

©x80000022

ex1ee

exe
MSTATUS exe
MISA ex4e9el11e5
MEDELEG exe

exe

exe

©x8eeeb8s3

exe
ox80011d4
exe

0x34bB2573

m Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here 98

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Since the opportunity presents itself, the situation of the figure below is the state when the break/
when the error appears will be checked. Check halt is applied. The call stack shows how we got
for errors when accessing mtval2 of the CSR. there. While the main function is executing, the
An error occurred, and an exception occurred, print_csr_status is called, and the trap_entry is
and the transition to trap_entry was made. Still, occurring there. In the call stack, you can click on
unfortunately, since an interrupt vector was only a displayed function to indicate where it occurred
proposed for the normal system, it resulted in an (approximate location). When you run the print_
infinite loop at the trap_entry. Where did it occur csr_status this time, it will look like the one on the
at that time in EWRISCV? It can be displayed right.
by the Call Stack when debugging. The left side
Call Stack > 0% [paantios ec snc low level inite x fun 00 funce | GO WETEid | Call Stack - x edlice | manc 3 lowlevelinc | A200.funch | n200_funce | GDIZVEIOIVE H
e pnley extern uintptr_t handle_trap(uintptr_t mcauge, uintetr_t ep): . DT’IUT G s!ahm() f
E;::i c(rlj:?‘jl e 3% AIJu:tpl[__l hani'ls_lr;a:imlplr__t noause, wintptr_t sp))é _cs;_(___gaﬁ_ EB&E’%‘J_)
-7 _fodm ri_init_zo £ "“@¥ i }L TYEC)
it ol veetur balaaeis ¥ o wumm I H
| i
return 80 c| 74
61 (] in’ . Jﬁiﬂjﬁ
| dnterrupt void trap entev(] : 4 pn
" ulntpte_t neause = _read_cor(_CSR_NCAUSE) W B4
| andle_Trap(acause, T} g
__intorrupe void irg_entrx() g
g L ultatrt na r{ SR NCAE) g
S o 71
et 7
3 L}
a
@

m Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here 99

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

MEPC and MCAUSE
From there, you can find out more about the CSR
value. In EWRISCYV, you can check the CSR value
on the register screen.
Registers 1 * I X Disassembly
Find: | | Group: | ¥ Vi G“m’i ~ || Zone: | Memory "IIEJ
| Mame Walue Disassembly
I Tl 4e? ' | 3ad 0xB00"11a4: 0x3410°2573 cErr al, mepc
e o 0. 0000"0000 0x800° 11a8: Dxc02a cowsp al, O
| atime 0x0538 " 58da 0x500"112a: 0x0800°1537 lui al, 0x8001
| utimeh 000000000 0xB00"11ae: Ox2fc5’0513 addi all, al, 0x2FC g Taes
| instret 0x0672 9483 U}!SUI]'UbQ: 0x20b% |_:_.ja| printf oy
|t s printf (“HMCLLSE TnEn¥n", rear ar ol MCELE]
B L it 0x800°11b4: 0x3420°2578 csrr all, mcause
narchid 0xB0O00° 0022 0xB00° 11b8: Oxc02a C.SWSP al, 0
! simpid 0x0000°0100 0x%800'11ba: 0x0800°1537 lui all, 0x8001
i shartid 0x0000°0000 0xB00° 11be: Dx3105'0513 addi al, al, 0x310 it S
| nstatus 00000 * 1800 0x800°11c2: Dx283d c-jal printf ERLUTE
| z : printf (TMTVAL Ox¥ukn™, read _cs GER_MTYAL ¥)5
| -BIas s o oo 0x800°11c4: Dx3430°2573 csrr al, mtval
| mideleg 0x0000°0000 0xB00"11c8: Dxcl2a c.swsp al, 0
lamie 0x0000° 0000 0xB800"11ca: 0x0800°1537 lui a0, 0xa001
;-i-lll'UEl: 0x0800° 0083 0xB00"11ce: 0x3245'0513 addi all, all, 0x324 g
| acountiaren 0x0000°0000 0x600"11d2: Dx203d ~ c.jal printf e P
00l printf{mival? Okcen read _csrl Bx348 3)i
e L oot | 5 0x800°11dd: Dx34b0°2573 csrr al, Dx3db
AR 0x0800° 1 1dd —— | 0x600"11d8: Dxc02a c.swse al, 0
acause (3000 0002 0x800°11da: 0x0800°1537 lui al, 0x8001
i Ox34b0 2573 0x800°11de: Dx3385°0513 addi a0, a0, 0x398 e
! D0000° 0000 : 0x500"11e2: Dx2539 c.lal printf 7 0...
0x0000°0000 J
| ascratchcey 0x0000°0000 0x300 '11e4: 0xd0fl c.lwsp ra, OxiC
| mscratchcsel D000 0000 UxSDU:HEB: DxE105 c.addilBsp 0220
| hpmcounter3 0x0000 0000 0x800°1128: 0x8082 c.ret . =0
| heacounterd 0x0000° 0000 0x800°11ea: D*EUBQ bc1g 0 Pt
| IeNc ot ar b 0x800°11ec: 0xSG 0x45 Dxde DCB VENDORID O
BT SR Dekd Dnde o
| hpmcounter % f
| homenuntard M ANNN A0 0x20 Dx20 0x20
0x20 0x30 0x78
L 025
Terminal /O Registers 1 0xB00"11fc: Dx78 Oxfia 0x00 DCB 120, 10, 0, 0 Fl
MEPC stands for Machine exception program MCAUSE (Machine trap cause) to see what the
counter, so it records the PC at the time of cause is. The GD32V103 has been extended
interruption. It can be confirmed that it occurred from the standard specification to include the
when CSRR a0, 0x34B was issued. Check following bit settings:
Field bit Memo
INTERRUPT 31 0: Exception or NMI, 1: Interrupt
MINHV 30 Indicate processer is reading
interrupt vector table
MPP 29~28 privilege mode before interrupt
MPIE 27 interrupt enable before interrupt
MPIL 23~16 Previous interrupt level
EXCCODE 11~0 Exception/Interrupt Encoding

m Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here 100

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Since the value of mcause is 0Ox30000002,
INTERRUPT=0 causes EXCEPTION or TRAP,
MPP=3 (machine mode before interrupt), and
EXCCODE causes the exception to 2. Upon
investigating the nature of exception 2, which

was not listed in the microcontroller specification,
the RISC-V specification (reference [5]) was
consulted, revealing the following: lllegal
instructions are being issued for accessing CSR
that should not be accessed. mstatus

INTEERUPT Code memo

0 0 Instruction address misaligned
(0] 1 Instruction access fault

(0] 2 lllegal instruction

(0] 3 Breakpoint

0 4 Load address misaligned

0 5 Load access fault

0 6 Store/AMO address misaligned
(0] 7 Store/AMO access fault

(0] 8 Environment call from U-mode
0 9 Environment call from S-mode
(0] 10 Reserved

0 1 Environment call from M-mode
0 12 Instruction page fault

0 13 Load page fault

(0] 14 Reserved

0 15 Store/AMO page fault

(0] 16~23 Reserved

0 24~31 Designated for custom use

(0] 32~47 Reserved

0 48~63 Designated for custom use

0 >64 Reserved

Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here 101

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

mstatus

indicates the state of execution in machine
mode. The GD32V is as follows. Set the
permission of the CPU itself to interrupt in MIE
(1: allowed, O: forbidden), and MPIE indicates the

mstatus: Machine

12

state of MIE before the interrupt is entered. The
MPP indicates the privileged status before the
interrupt is given in 2 bits. Displays 0O for user
mode and 11 for machine mode.

Status Registers

n 7 3 2

TToZ

M
|
E

MIE: Interrupt enable bit
MPIE: Save previous value of MIE bit
MPP: Previous Privilege State

In fact, before and after interruption, it looks

like this: When running in machine mode, it is
possible to accept interrupts when MIE is 1. When
an interrupt is entered, the MPP is entered in
machine mode (11), and the MPIE is entered with
the value of the MIE before the interrupt (1). In
RISC-V, when an interrupt is entered, the MIE is

Before interrupt When
mie 1

mip O

mpp 00

Here, let’s take a look at CSRs that are
independent of execution.

mvendorid

mvendorid is the JEDEC manufacturer ID.
Upon examining the read value, it was found
to be OXOO00O03I1E. After some research
was conducted, reference [8] was found to
indicate that this value is the code for Andes

Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here

0 because the next interrupt cannot be received.
Note: In the case of Cortex-M, it is possible to
receive the next interrupt immediately after the
interrupt. If you have been using Cortex-M, please
pay attention to this point. When the interrupt
returns, it returns to the left side.

an interrupt occurs
mie O
mip 1

mpp 11

Technology Corporation. This point was not
initially understood. Upon further research

into GD32V103, a page containing references

[9] was discovered. On the Nuclei website,
GigaDevice's GD32V is presented as an example
of a customer. Furthermore, the N22 RISC-V
processor from Andes is introduced. Thus, it
appears that the processors from GigaDevice,
Nuclei, and Andes in China are related.

102

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

e marchid

marchid indicates the ID of the microarchitecture In the results of the GD32V103 run, Marchid

to be executed. If the most significant bit (MSB) was 0x80000022. The MSB is 1, and the

of marchid is zero, the vendor sets the ID for Architecture ID is 0x22. In the case of the Andes
an open-source project, and ifitis 1, itis a A45 core mentioned earlier, it is 0x8a45, so it is

commercial project. The ID of the open-source conceivable that this pertains to the Andes N22

project is given in reference [10]. core.

Field bit memo
MSB 31 0: 0SS, 1: Business Project
Architecture ID | 30~0 | Architecture ID

¢ mimpid and mhartid

mimpid seems to return the ID at the time of is currently running. It is 0x0 in the result of
implementation. The results of the GD32V103 executing the GD32V103. This is by design, and
execution were Ox00000100. Andes’ A45 naming it is stated that a hardware thread must return
method is Major=1, Minor=0, Extension=0. zero. If there is only one thread of execution, that
mhartid indicates the ID of the hardware thread thread will return a Ox0 as in this case.
on which the code is executed. Some recent
microcontrollers are capable of multi-threaded e misa
execution that executes multiple codes at the misa provides information about the instruction
same time in hardware. Still, in such a case, set. Basically, it is specified by bit length and
it is possible to check which hardware thread instruction set (Extensions), as shown in the
figure below.
31 30 29 26 25 0]

MXL 0 Extensions

Ol 32bit

10 64bit

11 128bit

m Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here 103

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

The extensions part is defined as follows.

Bit Name Description

0 A Atomic extension

1 B Tentatively reserved for Bit-Manipulation extension

2 C Compressed extension

3 D Double-precision floating-point extension

4 E RV32E base ISA

5 F Single-precision floating-point extension

6 G Reserved

7 H Hypervisor extension

8 | RV321/641/128I base ISA

9 J Tentatively reserved for Dynamically Translated Languages extension

10 K Reserved

1 L Reserved

12 M Integer Multiply/Divide extension

13 N Tentatively reserved for User-Level Interrupts extension

14 (0] Reserved

15 P Tentatively reserved for Packed-SIMD extension

16 Q Quad-precision floating-point extension

17 R Reserved

18 S Supervisor mode implemented

19 T Reserved

20) User mode implemented

21 Y Tentatively reserved for Vector extension

22 W Reserved

23 X Non-standard extensions present

24 Y Reserved

25 VA Reserved
In the case of GD32V103, it was 0x40901105, the manual which extended instructions are
so it will be an extended instruction described supported, but it may be useful to know that
below. As for how to write RISC-V, it is in the form these contents are included in the CSR.

of corresponding to RV32IMAC. It is written in

misa Ox 4 0O 9 0 1T 1 0 b
0100 0000 1001 0000 00010001 0000 0101

32bit | |—~ Atomic extension
Compressed extension

RV321/641/128I base ISA
Integer Multiply/Divide extension

User mode implemented

Non-standard extensions present

m Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here 104

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

3.2 Using the Renesas FBP-R9A02G 021
board

Here, we will use Renesas’ FBP-R9A02G021
board, which has Renesas’ first general-purpose
32-bit RISC-V MCU mounted on it.

The FBP-R9A02G021 has an on-board debugger functional, so let’s use the external debugger
and a connector for connecting an external first. At the end of this section, we will also
debugger probe. When using EWRISCYV, the explain the on-board connection.

external debugger connection with |-jet is more

m Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here 105

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

3.21 Generating and debugging an example project

To generate an example and BSP code for Configurator tool. To create a new project for
the Renesas FBP-R9A02G021 board, it is EWRISCV and FBP-R9A02G021, start the Smart
recommended to use the Renesas Smart Configurator tool and do File > New. The following

dialog will appear:

E& tew Smart Configuration File O X

Smart Configuration Settings

Select platform and toolchain settings for the new configuration file

Category: | RISC-V MCU o
Platform: Toolchain:
type filter text || @) 1R Renesas RISC-V Toalchain
~ Board B LLvM for Renesas RISC-V
FPB-RIA02G021 (RIADZGO214CNE)
~ Device
v G021
~ G021 - 16pin
ROAD2GO214CBY
G021 - 24pin
G021 - 32pin
G021 - 48pin

Download more boards...

ROM size: 128 KB, RAM size: 16 KB, Pin count: 48 |

File name: | FFP-R9A02G021 |

Location: |C:\pI'C'j | Browse...

Select the FPB- ROA02G021 board and the possible to configure system details, such as

IAR Renesas RISC-V Toolchain. After this, it is clocks, components, and pin settings:
G smart Configurator - u] X
File Window Help
& 5 | [
) FPB-ROAO2G021.scfg X = O || &1 MCU/MPU Package X =

v 1 = BllaldFm 5
1= Generate Code Generate Report B | EAT
B3 24 = [Configure @
2E | WS Property Value ~
type filter text | #
~ #
~ (&= Startup e
P # OCD/Serial Programmer |D Setting Register 0 valu OxFFFFFFFF
= e # OCD/Serial Programmer D Setting Register 1 valu OxFFFFFFFF
e # OCD/Serial Programmer |D Setting Register 2 valu OxFFFFFFFF
OCD/Serial Programmer |D Setting Register 3 valu OxFFFFFFFF
Access Window Start Block Address (FAWS) Ox7FF
Access Window End Block Address (FAWE) Ox7FF
UIDSD: User ID Setting Register 0 value OxFFFFFFFF
UIDS1 : User ID Setting Register 1 value OxFFFFFFFF
UIDS2: User ID Setting Register 2 value OxFFFFFFFF
UIDS3 : User ID Setting Register 3 value OxFFFFFFFF
Data flash memorv area access control(DFLEN) Disable ol
5 .
Macro definition: BSP_CFG_USER_ID_SETTING_0
Specifies the user ID setting
Overview | Board | Clocks | System | Components| Pins| Interrupt » Legend
B Console X BEE| B -~ /9~ = B ||[28 Configuration Problems X ¥ §=0o
Smart Configurator Qutput 0 items
Description
: 5

m Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here 106

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

The standard settings are often OK to start In the example above, the generated EWRISCV
with, so it is fine just to click the Generate Code workspace file will be called FPB-R9A02G021.
button. The tool will generate code and produce a eww. Open the workspace file in EWRISCV, and
clickable link to the resulting files in the Console the following will be shown:

tab in the Smart Configurator Output window.

S Fre-Rs
Fle Edit View Projed Ljet Took Window Help

iNoRe &8 LBE 2 £Q >822 <P >R B0 5O -
Workspace v qx ‘Lnsn,mrmu.n x »

21 - IAR Embedded Workbench IDE - RISC-V 3.30.1 - o x

(Dot

Files
@ FPB-RIADZGO21 - Debug
|2 Renesas SC
L i sme_gen
1 8 general
{21 W _bsp
s boord
@ i doc
- ol meu
@ i all
L i 3a02g021
ol ragister_sccass
u_clocks
|— 8 meu_clocksh #define BSP_CFG USER_ID
— 8 meu_infoh #define BSP_(TD_SETTIN
|- B mou_mapped_intempts.c #define BSP_CFG_USER_ID_SETTING 3 (&:
B mcu_mapped_interupts h
|— B meu_mapped_intemupts_orivate h #define BSP_CFG VALUE (

o o EET R —— sdefine 8P CFG0FSI RecVALDE (o
B vectblh .
{— @ platiorm.n I +

FPB-RIAIZG021

Build v ax

Messages Fie Line

Totel number of errors:
Total number of warnings: 0
Resaiving depandencias
Build succeeded

Build De

Ready Ertors 0 Wamings0 _ Ln 93, Col 29 System CAP NUM OVR

As we can see, the UIDSO: User ID Setting After this, it is possible to do Project > Make. The

Register value that is set to OXFFFFFFFF in project is normally pre-configured to use the

the Smart Configurator can be found in the I-jet debug probe. If not, go to Project > Options

generated code, in r_bsp_config.h, as macro > Debugger and set the Driver to I-jet. Now, to

definition BSP_.CFG_USER_ID_SETTING_O. download the generated application to the board,
do Project > Download and Debug, and a debug
session will start. This is how it looks:

9 FPB-RA02G021 - IAR Embedded Workbench IDE - RISC-V 3.30.1 = o x
File Edit View Project Debug Ijet Tools Window Help
inOE @ - Y > 58 LR A8-=6c0_ inFr il 03-0
Workspace v & % [ospcontion maine x | Registers 1 v & % Disassembiy vax
Debug main() 00| Finas| v| € > eomifren ~] somi
P A #inelude Tr_sme_entry-h Narme Value Access Disassambly
B @ FPB-RIAI2G021 - Debug + int main(void) = DFLCTL Pe asn(‘csrw mtvec, t0°)
i Fenesas_SC 0xd?8: 023052'9073
L& i sme_gen 2| FeturnEy & FPHCR uint32_t vector = 0x20
& gonerel 3 #FASR A Uxd?o: 0x2000' 4597
e bep % FSARL [Wit asn('add t0. zexo, %0°
& board * FSARH Pelaesblieess Erie i 0xdB0: 0x00a0'02b3
*FCR Right.cick for more registers and options AU asn(‘ocezy 02307, 0°)
* FEARL B e 0xdB4: 0x3072'9073
= FEARH 020000 ReadWri ¥
Lo @ sanzgoz! = FRESETR 0z00 Readwri 0xdB8: 028082
gister_ace. % FSTATROO 020000 ReadOnk Oxd8a: 00000
i ok ® FSTATRL ox04 ReadOnt return 0;
= Bmaiciosken % FUBLO 00000 Readwri nain
|— B mainoh © FVBED 020000 Peadwiit [0xdfc; 0x4501
mou mappe % FVBLL 00000 ReadWii OxdBe: 028082
e e e + FUBEL 020000 Readwii exit
mou_mappe. ® FPR 0z00 Readwrit 02d30: Oxa04l
B vectble # FPSR 0:00 ReadOnk 0:d92: 00000
L Rvectolh % FSECHR 0=7£00 ReadOnk __ATTRIBUTES_NORETURH _no_
— B platiormh # FAWSHR 0507££ FeadOnk: {
L B reedment % FAVEMR oxo7EE ReadOnt sbort
o B ¥ * FISR 007 Readwii OxdS4: 047139
FPB-RIAD2G021 === — - -
Debug Log v x
Log
Tue Mar 12, 2024 16:55:45: Core RYIZACIMUX
Tue Mar 12, 2024 16:55:45: A-Atamic extension
Tue Mar 12, 2024 16:55:45: G- Compressed extension
Tue Mar 12, 2024 16:5545. |- RV base IS4
Tue Mar 12, 2024 16:55:45: M- Integer Muliply/Divide extension
Tue Mar 12, 2024 16:55:45: U - User mode implementedt
Tue Mar 12, 2024 16.55.45: X-Non-standard extensions present
Tue Mar 12, 2024 16:55:45: 0 4 tiggers implemented
Tue Mar 12, 2024 16:55:45: trigger #0 : address and data match with 31-bit mask
Tue Mar 12, 2024 16:55:45: trigger #1 acdress and data match with 31-bit mask
Tue Mar 12, 2024 16:55:45: Hriqger #2 acldress and data match with 31-bit mask
Tue Mar 12, 2024 16.55:45: trigger #3: address and data match with 31-bit mask
Suld | Debug Log
Ready Ertors O, Warnings 2 Ln'5, Cal 5 System AP NUM OVR

m Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here 107

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

In the debug session, we can study various CSRs To study a simple code change in the debugger,

in the Registers window, such as the Data flash we can add #include “platform.h” in our main.c
memory area access control register DFLEN in file, and set the CSR bit DFLEN to 1 by adding

the FLCN register group. Here, we can see that R_FLCN->DFLCTL_b.DFLEN = 1to the main
access to the data flash memory area is disabled function. The register definition can be found
since the value is O. in the generated ROA02G021-specific BSP file

It is also possible to see that the connected core iodefine.h in the:

is an RV32ACIMU core in the Debug Log window. .

That means that the core implements the Atomic,
Compressed, Integer, Multiplication, and User folder.

Mode extensions.

main.c w | Registers 1
main[) iy Find:| v| £ » Group:|FLCN
#include "r_smc_entry.h" N \al
#include "platform.h™ S e
= DFLCTL
int main(void) i DFLENW 1
1 + FPHCR 0x08
R_FLCN->D‘F:LCTL_|'J.D‘FLEN = 13 + FASR Q=00
o ; ECtuEn 9 # FSARL 0=0000
+ FSARH 0=z0000

There is also an on-board J-Link debug probe on
the FPB- ROA02G021 board. To use it, connect it
to the USB-C port like this:

m Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here 108

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

Then, start SEGGER’s JLinkGDBServer.exe
application and let it connect to the RISC-V core:

] Command Prompt

C:\Program Files\SEGGER\JLink>JLinkGDBServer.exe
BN SEGGER J-Link GDB Server V7.94m
File Help

GDB |Waih’ng for connection | I Stay on top

J-link |Connected | I |cJTAG | |4DDD kHz | Show log window

Device [RISC-V (Halted) |} [5.30v | [ittie endian | [J Generate logfile

Logfile |{Not enabled) | [verify download

Clear Log

[Firmware: J-Link OB-RAGMZ compiled Jan 17 2824 14:57:14
Hardwsre: V1.ee

5/N: 1884492818

Checking target voltage...

J-Link found 1 JTAG device, Total IRLen = 5

JTAG ID: exesssessl (RISC-V)

Halting core...

RISC-V Rv32 detected. Using RW32 register set for communication with GDB
Core implements no FPU

Connected to target

wWaiting for GDEB connection...

0 bytes downloaded Connected to target

Now, the JLinkGDBServer.exe application and select the GDB Server driver. Configure the
waits for a TCP/IP connection on port 2331. In GDB Server driver as follows (localhost,2331):
EWRISCYV, go to Project > Options > Debugger

Opticns for node "FPB-RIAD2G021" x

Category: Factom Settings

General Options

Static Analysis
C/C++ Compiler
Assembler Setup Breakpoints
QOutput Converter
Custam Build

Linker
Build Actions ‘Incalhast.2331

TCF/IF address or hostname [port]

Debugger
GDB Server
Iet
Simulator
Third-Party Driver

m Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here 109

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

After this, we can start the debug session, and
the same register values can be studied:

Note that currently, the GDB Server performance
and functionality are somewhat limited in
EWRISCV. For example, it is not possible to study
certain CSRs while using the EWRISCV GDB
Server implementation. This will be improved in
later releases. With an I-jet debug probe, no such
limitations exist.

Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here

€ FPB-R9A02G021 - AR Embedded Werkbench IDE - RISC-V 3.30.1
File Edit View Project Debug GDEServer Tools Window Help
D0 R = B0 O = <Q>%=<P >0 RO=6GCcO.
Workspace w 0 X | mainc X w | Registers 1
Debug V| main(] fir| Fing: ~| &£ > Group: |[FLCN
#include “r_smc_entry.h"
Files o #include “platform.h” Name Value
= @ FPB-R3A02G021 - Debug ~ + = DFLCTL 0=01
1 i Renesas_5C it main(void)
£ M sme_gen R_FLCN->DFLCTL_b.DFLEN = 1; ;{EEEER E"‘Eﬁ
B general o Tl : o
1 Wl r_bsp E - + FSARL 0=0000
B hoard + FSARH 0=0000
M doc # FCR 0x00
=1 W mcu = FEARL D=0000
| Al = FEARH 0=0000
| L= @ ran2g021 = FRESETR 0=00
| M reqgister_access HFSTATROD 0=0000

10

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

4. Navigating RTOS, automated
workflows, and code quality

LAY

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

4. Navigating RTOS, automated workflows,

and code quality

When diving into the RISC-V architecture and

its ecosystem, understanding and utilizing the
right tools is crucial for effective learning and
development. Among these, Real-Time Operating
Systems (RTOS) play a vital role, especially as
software projects grow in complexity. RTOSs

like Azure RTOS (ThreadX) and FreeRTOS,
available as sample implementations with the IAR
Embedded Workbench for RISC-V (EWRISCV),
offer structured resource, task, and timing
management essential for real-time applications.
Additionally, SAFERTOS provides a pre-certified,
deterministic RTOS solution for applications
requiring the utmost safety and reliability.

This book will not delve into the specifics or step-
by-step details of the RTOSes. We encourage
developers to experiment with the provided
out-of-the-box examples and seek additional
resources on the RTOS vendors’ websites or
directly on GitHub.

Additionally, to address common development
challenges associated with modern workflows,
automation, and Continuous Integration/
Continuous Deployment (CI/CD) pipelines, IAR
enhances the ecosystem by offering the IAR
Build Tools for RISC-V, featuring:

oC

GitHub

Server

@ Update linux.yaml =

IAR License

Efficient Software Building and Testing: The
comprehensive tool suite, including the IAR C/
C++ Compiler, Assembler, Linker, and IARBuild,
facilitates efficient building and testing of critical
software on a large scale, ensuring reliability and
performance in deployment.

Adaptability and Performance Across
Environments: Designed to adapt to various
organizational needs, these tools can be
deployed on small build servers with a few
licenses or scaled to support hundreds of parallel
builds, ensuring high performance regardless of
the scale.

Integration with Modern Development Workflows:
Built with modern software development
practices in mind, the IAR Build Tools seamlessly
integrate into CI/CD pipelines, supporting

Virtual Machines, Containers (Docker), and Self-
hosted Runners. This compatibility ensures that
developers can maintain efficient, continuous
integration and deployment processes, which is
crucial for modern software development.

e L i) 42
] =] Build

Self-Hosted Self-Hosted Self-Hosted Toaols
Tunrer runner runner

Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here 112

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

By leveraging the RTOS options and the IAR
Build Tools for RISC-V, developers can navigate
the complexities of RISC-V development with

a comprehensive set of resources designed to
address key challenges and enhance the quality
and efficiency of software projects.

Finally, in addition to RTOS and automated
workflows, ensuring code quality and facilitating
code reuse are pivotal for the sustainability and
efficiency of software projects. IAR addresses

these aspects with its powerful static analysis
tool, C-STAT, fully integrated into the IAR
Embedded Workbench. C-STAT performs

an exhaustive analysis on the source code
level, identifying potential issues early in the
development process. This proactive approach
to code quality helps developers adhere to
industry-standard coding practices, including
MISRA, CWE, and CERT C/C++ Secure Coding
Standards.

Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here

13

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/

5. Conclusion

In conclusion, this book serves as a
comprehensive guide for developers and
professionals navigating the intricacies of
embedded software development within the
RISC-V ecosystem. By elucidating the features
and capabilities of RISC-V and the extensive
toolset provided by the IAR Embedded
Workbench for RISC-V (EWRISCV), it lays a solid
foundation for understanding CPU instruction
sets, stack behaviors, and the pivotal role of Real-
Time Operating Systems (RTOS) in managing
complex software projects.

The book emphasizes the importance of
selecting the right tools, such as the IAR Build
Tools for RISC-V and the C-STAT static analysis
tool, to enhance development workflows,
ensure code quality, and facilitate code reuse.

References

1. Computer Architecture: A Quantitative
Approach to Design, Implementation,
and Evaluation, David A.Patterson, John
L.Hennessy

2. 1AR C/C++ Development Guide, Linking
using ILINK https:/wwwfiles.iar.com/riscv/
EWRISCV_DevelopmentGuide.ENU.pdf

3. Top Ten Fallacies About RISC-V, David
Patterson https://riscv.org/blog/2023/03/top-
ten-fallacies-about-risc-v/

4. The RISC-V Instruction Set Manual Volume I:
Unprivileged ISA

5. The RISC-V Instruction Set Manual Volume
[I: Privileged Architecture Document Version
20211203

These solutions offer a range of functionalities
from efficient software building and testing to
adherence to industry-standard coding practices,
thereby mitigating security risks and coding
errors.

With practical insights into the use of RISC-V

on hardware along with a focus on modern
development practices including CI/CD
pipelines, this guide encourages experimentation
and further exploration beyond its pages. It
underscores the value of certified compilers

like those offered by IAR, which streamline the
development process, especially in systems
requiring functional safety.

By leveraging the resources and examples
provided, along with the IAR Embedded
Workbench's powerful capabilities, developers
are well-equipped to tackle the challenges of
RISC-V development, ensuring their projects
are not only efficient and reliable but also
maintainable and secure for future endeavors.

6. https:/hsandid.github.io/posts/risc-v-
custom-instruction/

7. https://github.com/riscv/riscv-fast-interrupt/
blob/master/clic.adoc

8. AndesCore AX45MP-1C Processor Reference
Manual, https://www.andestech.com/wp-
content/uploads/AX45MP-1C-Rev.-5.0.0-
Datasheet.pdf

9. Nucleisys Customer Cases, https:/www.
nucleisys.com/product/rvipes/Icxp/

10. Open-Source RISC-V Architecture IDs,

https://github.com/riscv/riscv-isa-manual/
blob/latex/marchid.md

Get the most out of this eBook - download the IAR Embedded Workbench for RISC-V here 115

https://www.iar.com/products/architectures/risc-v/iar-embedded-workbench-for-risc-v/
https://wwwfiles.iar.com/riscv/EWRISCV_DevelopmentGuide.ENU.pdf
https://wwwfiles.iar.com/riscv/EWRISCV_DevelopmentGuide.ENU.pdf
https://riscv.org/blog/2023/03/top-ten-fallacies-about-risc-v/
https://riscv.org/blog/2023/03/top-ten-fallacies-about-risc-v/
https://hsandid.github.io/posts/risc-v-custom-instruction/
https://hsandid.github.io/posts/risc-v-custom-instruction/
https://github.com/riscv/riscv-fast-interrupt/blob/master/clic.adoc
https://github.com/riscv/riscv-fast-interrupt/blob/master/clic.adoc
https://www.andestech.com/wp-content/uploads/AX45MP-1C-Rev.-5.0.0-Datasheet.pdf
https://www.andestech.com/wp-content/uploads/AX45MP-1C-Rev.-5.0.0-Datasheet.pdf
https://www.andestech.com/wp-content/uploads/AX45MP-1C-Rev.-5.0.0-Datasheet.pdf
https://www.nucleisys.com/product/rvipes/lcxp/
https://www.nucleisys.com/product/rvipes/lcxp/
https://github.com/riscv/riscv-isa-manual/blob/latex/marchid.md
https://github.com/riscv/riscv-isa-manual/blob/latex/marchid.md

	About this eBook
	Foreword
	About the Author:

	1. Introduction
	1.1 Why RISC-V?
	1.2 Open-Source ISA and RISC-V
	1.3 What is RISC
	1.4 RISC-V instruction set overview
	1.4.1 RISC-V instruction set basics
	1.4.2 Instruction extensions and custom instruction
	1.4.3 General-Purpose registers & Floating-Point registers
	1.4.4 CSR(Control and Status Register)
	1.4.5 Modes of operation
	1.4.6 Simple assembler instructions

	1.5 Profiles
	1.5.1 RISC-V profiles
	1.5.2 RISC-V platform specification

	1.6 Why should we use RISC-V?
	1.7 Organization of this document

	2. Basic operation of the EWRISCV
development environment
	2.1 Precautions when using EWRISCV
	2.2 Create a project (sample 1)
	2.2.1 Creating and running a new project
	2.2.2 Project structure
	2.2.3 About the manual

	2.3 Options
	2.3.1 General Options

	2.3.2 C/C++ Compiler
	2.3.5 Debugger
	2.3.4 Linker
	2.3.3 Output converter
	2.4 Understanding the RISC-V project as a whole
	2.4.1 Creating sample 2
	2.4.2 Running sample 2
	2.4.3 About GP relative

	2.5 C extension instructions
	2.6 M Extension instructions
	2.6.1 Creating sample 3
	2.6.2 Enabling M extension instructions
	2.6.3 RV32M

	2.7 A extension instructions
	2.7.1 Creating sample 4 with A extension instructions

	2.8 N extension instructions
	2.9 Custom instructions
	2.9.1 Opening the IAR information center examples
	2.9.2 RISC-V operation codes
	2.9.3 Custom instruction
	2.9.4 Using custom instructions in code
	2.9.5 Using custom instructions in the simulator

	2.10 About function calls/ABIs
	2.10.1 C language functions
	2.10.2 Rules for calling functions

	2.11 About the output of EWRISC-V
	2.11.1 Executables/libraries
	2.11.2 Object files
	2.11.3 List files
	2.11.4 Browse files
	2.11.5 MAP files

	3. Learn RISC-V on real hardware
	3.1 Using the GigaDevice GD32VF103
	3.1.1 Debug probe connection
	3.1.2 Checking the connection with IAR I-jet
	3.1.3 LED blinking: creating sample 5 using GPIO
	3.1.4 Set up the debugger and start running
	3.1.4 Learning about interrupts
	3.1.5 Let’s check the CSR

	3.2 Using the Renesas FBP-R9A02G021 board
	3.2.1 Generating and debugging an example project

	4. Navigating RTOS, automated workflows,
and code quality
	Conclusion
	References

